L1 Mathématiques Analyse 1

Université de Brest

Feuille 4

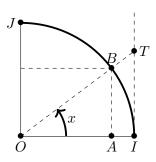
Fonctions dérivables

Questions de cours.

- 1. Donner la définition de la dérivabilité d'une fonction f en un point.
- 2. Pour f une fonction bijective et dérivable, exprimer la dérivée de la fonction réciproque f^{-1} en fonction de celle de f.
- 3. Énoncer le théorème de Rolle.
- 4. Énoncer le théorème des accroissements finis.

Exercice 1. Soit $n \in \mathbb{Z}$ et f_n la fonction définie par $f_n(x) = x^n$. En utilisant la définition de la dérivée, montrer que f_n est dérivable sur son ensemble définition et calculer sa dérivée.

Exercice 2 (Dérivabilité de sinus et cosinus). Soit $x \in \left]0; \frac{\pi}{2}\right[$. Dans le repère orthonormé $\left(O, \overrightarrow{OI}, \overrightarrow{OJ}\right)$, on note B le point de coordonnées $(\cos(x), \sin(x))$, A le point de coordonnées $(\cos(x), 0)$ et T le point d'intersection de la droite (OB) et de la tangente en I au cercle unité.



- 1. En comparant les aires du triangle OIB, du secteur angulaire OIB et du triangle OIT, montrer que pour tout $x \in \left]0\,;\, \frac{\pi}{2}\right[\,,\, \sin(x) \leq x \leq \tan(x)\,$ et $\cos(x) \leq \frac{\sin(x)}{x} \leq 1\,$.
- 2. Montrer que $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$ et $\lim_{x\to 0} \frac{\cos(x)-1}{x} = 0$.
- 3. En déduire que les fonctions $x \mapsto \sin(x)$ et $x \mapsto \cos(x)$ sont dérivables sur \mathbb{R} et déterminer leur dérivée.

Exercice 3. Soit $f: I \longrightarrow J$ une fonction bijective et dérivable. A partir de l'expression de la dérivée de f^{-1} en fonction de celle de f, calculer les dérivées des fonctions suivantes tout en précisant les intervalles I et J.

$$f: x \longmapsto \arccos(x)$$
 $g: x \longmapsto \arcsin(x)$ $h: x \longmapsto \arctan(x)$

Exercice 4. Déterminer l'ensemble de dérivabilité des fonctions suivantes et calculer leur dérivée.

1.
$$f: x \longmapsto x |x|$$

4.
$$f: x \longmapsto \arctan\left(\sqrt{x e^x}\right)$$

2.
$$f: x \longmapsto x \sin(x) \sqrt{x+1}$$

5.
$$f: x \longmapsto \arcsin\left(1 - e^{-(1+x^2)}\right)$$

3.
$$f: x \longmapsto (x^2 + 3x + 1)e^{-x^3}$$

6.
$$f: x \longmapsto \arccos\left(\sin(x^2+1)\right)$$

Exercice 5. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} \cosh(x) & \text{si } x \le 0 \\ \frac{1}{1+x} & \text{si } 0 < x \le 1 \\ \frac{2-\ln(x)}{4} & \text{si } x > 1 \end{cases}.$$

- 1. En quels points la fonction f est-elle continue?
- 2. En quels points la fonction f est-elle dérivable? Calculer sa dérivée en ces points.

Exercice 6. Déterminer $a, b \in \mathbb{R}$ de manière à ce que la fonction f définie sur \mathbb{R}_+^* par

$$f(x) = \sqrt{x}$$
 si $0 < x \le 1$ et $f(x) = ax^2 + bx + 1$ si $x > 1$

soit de classe \mathscr{C}^1 .

Exercice 7. On considère l'application $f:[-1;1] \longrightarrow \mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{1}{x} \left(\sqrt{1 + x^2} - \sqrt{1 - x^2} \right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- 1. Montrer que f est continue sur [-1; 1].
- 2. Montrer que f est dérivable sur]-1; 1[et que f' est continue sur]-1; 1[.

Exercice 8. Soit $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ la fonction définie par $f(x) = x^2 \sin\left(\frac{1}{x}\right)$.

- 1. Montrer que f est prolongeable par continuité en 0; on note encore f la fonction prolongée.
- 2. Montrer que f est dérivable sur \mathbb{R} mais que f' n'est pas continue en 0.

Exercice 9. Soit f une fonction définie sur un intervalle I. Montrer que pour tout $a \in I$, si f est dérivable en a, alors f est continue en a.

Exercice 10 (Accroissements finis). Soit $a,b\in\mathbb{R}$ tels que a< b. Soit l'application $f:[a;b]\mapsto \alpha x^2+\beta x+\gamma$ où $\alpha,\beta,\gamma\in\mathbb{R}$ avec $\alpha\neq 0$. Déterminer $c\in]a;b[$ tel que $f'(c)=\frac{f(b)-f(a)}{b-a}$. Donner une interprétation géométrique.

Exercice 11 (Inégalité des accroissements finis). Soient $a, b \in \mathbb{R}$ tels que a < b et $f, g : [a; b] \longrightarrow \mathbb{R}$ deux fonctions continues et dérivables sur]a; b[telles que pour tout $x \in]a; b[$, $|f'(x)| \leq g'(x)$.

1. Montrer l'inégalité des accroissements fini $|f(b)-f(a)| \leq (b-a) \sup_{x \in]a\,;\, b[} |f'(x)|$.

- 2. Montrer que $(b-a) \inf_{t \in [a;b]} |f'(t)| \le 2 \sup_{t \in [a;b]} |f(t)|$.
- 3. Montrer que $|f(b) f(a)| \le g(b) g(a)$.

Exercice 12. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par $f(x) = \arctan(x)$.

- 1. Montrer que pour tout $x, y \in \mathbb{R}$, $|f(x) f(y)| \le |x y|$; préciser les cas d'égalité.
- 2. Montrer que pour tout $x \in \mathbb{R}^+$, $\frac{x}{1+x^2} \le f(x) \le x$.

Exercice 13. Montrer que pour tout $x \ge 0$, $\frac{x}{\cosh^2(x)} \le \tanh(x) \le x$.

Exercice 14. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction dérivable sur \mathbb{R} . On se donne $a \in \mathbb{R}$ et $h \in \mathbb{R}^*$.

- 1. Que nous dit le théorème des accroissements finis à propos du rapport $\frac{f(a+h)-f(a)}{h}$.
- 2. Montrer que si $\lim_{x\to a^-} f'(x) = l$, alors f'(a) = l.
- 3. Montrer que si $\lim_{x\to a^+} f'(x) = l$, alors f'(a) = l.
- 4. Soit $g: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction croissante. On pose

$$E_a = \{g(x) : x < a\}$$
 et $F_a = \{g(y) : y > a\}$.

Montrer que E_a admet une borne supérieure notée m et que F_a admet une borne inférieure notée M. Montrer que $m \leq g(a) \leq M$.

- 5. Montrer que $\lim_{x\to a^-} g(x) = m$ et $\lim_{y\to a^+} g(y) = M$.
- 6. Montrer que si la dérivée f' de f est croissante, alors cette dérivée est continue.

Exercice 15 (Règle de l'Hospital). Soit $f, g : [a; b] \longrightarrow \mathbb{R}$ deux fonctions continues sur [a; b] et dérivables sur [a; b[. On suppose que pour tout $x \in [a; b[$, $g'(x) \neq 0$.

- 1. Montrer que pour tout $x, y \in [a; b]$, si $x \neq y$, alors $g(x) \neq g(y)$.
- 2. Montrer que pour tout $\alpha, \beta \in [a; b]$ tels que $\alpha < \beta$, il existe $\gamma \in]\alpha; \beta[$ tel que

$$\frac{f(\alpha) - f(\beta)}{g(\alpha) - g(\beta)} = \frac{f'(\gamma)}{g'(\gamma)} .$$

Indication: Introduire la fonction $H:[a;b]\longrightarrow \mathbb{R}$ définie par $H(x)=f(x)-\frac{f(\alpha)-f(\beta)}{g(\alpha)-g(\beta)}g(x)$.

- $\text{3. Montrer que si } \lim_{x\to b^-}\frac{f'(x)}{g'(x)}=l \text{ , alors } \lim_{x\to b^-}\frac{f(x)-f(b)}{g(x)-g(b)}=l \text{ .}$
- 4. Calculer $\lim_{x\to 0} \frac{\ln(1+x)}{\sin(x)}$ et $\lim_{x\to 1^-} \frac{\arccos(x)}{\sqrt{1-x^2}}$.

Exercice 16 (Formule de Leibniz). Soit f et g deux fonctions n fois dérivables sur un intervalle I. Montrer que

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$$

où pour tout $k \in \{0,\dots,\,n\}$, $f^{(k)}$ désigne la dérivée k-ème de f. Par convention, $f^{(0)}=f$.

Exercice 17. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} \exp\left(-\frac{1}{x^2}\right) & \text{si } x > 0\\ 0 & \text{sinon} \end{cases}.$$

- 1. Montrer que f est continue sur \mathbb{R} et dérivable sur \mathbb{R} , en particulier en t=0.
- 2. Montrer que pour tout $n \in \mathbb{N}^*$ et tout x > 0,

$$f^{(n)}(x) = \frac{P_n(x) e^{-1/x^2}}{x^{3n}}$$

où P_n est un polynôme de degré 2(n-1).

3. En déduire que f est de classe \mathscr{C}^{∞} sur \mathbb{R} .

Exercice 18. Soit $n \in \mathbb{N}$ tel que $n \geq 2$ et $f : \mathbb{R}^+ \longrightarrow \mathbb{R}$ la fonction définie par

$$f(x) = \frac{1 + x^n}{(1+x)^n} \, .$$

- 1. Montrer que f est dérivable sur \mathbb{R}^+ et calculer sa dérivée.
- 2. Montrer que f atteint un minimum sur \mathbb{R}^+ que l'on déterminera.
- 3. En déduire que pour tout $x \in \mathbb{R}^+$, $(1+x)^n \le 2^{n-1}(1+x^n)$.
- 4. Montrer que pour tout $x, y \in \mathbb{R}^+$, $(x+y)^n \le 2^{n-1}(x^n+y^n)$.

Exercice 19. On rappelle que

$$cosh(x) = \frac{e^x + e^{-x}}{2}$$
 et $sinh(x) = \frac{e^x - e^{-x}}{2}$.

- 1. Montrer que la fonction \sinh est une bijection continue de \mathbb{R} sur \mathbb{R} .
- 2. Montrer que la fonction réciproque argsh de \sinh est dérivable sur $\mathbb R$ et calculer sa dérivée.
- 3. Montrer que la fonction \cosh n'est pas une bijection sur $\mathbb R$ mais que sa restriction à $[0\,;\,+\infty[$ est une bijection continue de $[0\,;\,+\infty[$ sur un intervalle J à déterminer. Notons argch sa fonction réciproque.
- 4. Trouver l'intervalle maximal $I \subseteq J$ où argch est dérivable et calculer sa dérivée sur I.