
CLASSIFICATION OF LOG SMOOTH TORIC DEL PEZZO PAIRS

ACHIM NAPAME

Abstract. We give a description of all log-Fano pairs (X,D) where X is a
smooth toric surface and D a reduced simple normal crossing divisor such that
D is a torus invariant divisor.

1. Introduction

The Enriques–Kodaira classification gives a classification of complex compact
surfaces using their Kodaira dimension. Nonsingular projective minimal surfaces
with Kodaira dimension −∞ have an important position in this problem of classifi-
cation, they correspond in the MMP-terminology to Mori’s fiber spaces [5, Theorem
1.5.5]. In this paper, we are interested by log smooth toric del Pezzo pairs.

A n-dimensional toric variety is an irreducible variety X containing a torus
T ≃ (C∗)n as a Zariski open subset such that the action of T on itself extends to
an algebraic action of T on X. Given a simple normal crossing divisor D on X, we
say that (X,D) is a log smooth toric del Pezzo pair if X is a smooth toric surface
and D a torus-invariant divisor such that −(KX +D) is ample.

Maeda [4] gives a classification of logarithmic Del Pezzo surfaces using Fujita’s
classification theorem of polarized varieties of ∆-genera zero [2]. In this paper, we
give a proof of this classification on toric surfaces using their fans or polytopes. We
denote by Fr the Hirzebruch suface P(OP1 ⊕ OP1(r)).

Theorem 1.1. Let X be a smooth complete toric surface and D a reduced torus-
invariant divisor on X. Then, the pair (X,D) is log Del Pezzo if:

(1) X = P2 and D = D′ where D′ is a line;
(2) X = P2 and D = D′ +D′′ where D′ and D′′ are two lines;
(3) X = Fr and D = D′ where D′ is a section with (D′)2 = −r;
(4) X = Fr and D = D′ +D′′ where D′ is a section with (D′)2 = −r and D′′

is a fiber;
(5) X = F1 and D = D′ where D′ is a section such that (D′)2 = 1;
(6) X = F0 and D = D′′ where D′′ is a fiber.

The paper is organized as follows: in Section 2, we gives some properties of
polarized toric surfaces and their polytopes and in Section 3, we give the proof of
Theorem 1.1.

Acknowledgments. I would like to thank Hendrik Süss for showing me Maeda’s
paper [4].

2. Ample divisors on toric surfaces

2.1. Toric varieties. Let N be a rank n lattice and M = HomZ(N,Z) be its dual
with pairing ⟨·, ·⟩ : M ×N → Z. Then N is the lattice of one-parameter subgroups
of the n-dimensional complex torus TN := N ⊗Z C∗ = HomZ(M,C∗). We call M
the lattice of characters of TN . For K = R or C, we define NK = N ⊗Z K and
MK = M ⊗ZK. A fan Σ in NR is a set of rational strongly convex polyhedral cones
in NR such that:
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• Each face of a cone in Σ is also a cone in Σ;
• The intersection of two cones in Σ is a face of each.

A cone σ in NR is smooth if its minimal generators form part of a Z-basis of N .
A fan Σ is smooth if every cone σ in Σ is smooth. The support of Σ is given by
|Σ| :=

⋃
σ∈Σ σ and we say that Σ is complete if |Σ| = NR.

Notation 2.1. For a finite subset S ⊆ NR, we denote by Cone(S) the cone gener-
ated by S. For a fan Σ, we denote by Σ(r) the set of r-dimensional cones of Σ and
by uρ ∈ N the minimal generator of the ray ρ ∈ Σ(1).

Let X be the toric variety associated to a fan Σ in NR with torus T = N ⊗Z C∗

[1, Chapter 3]. The variety X is obtained by gluing affine charts (Uσ)σ∈Σ where
Uσ = Spec(C[Sσ]) with C[Sσ] the semi-group algebra of

Sσ = σ∨ ∩M = {m ∈ M : ⟨m,u⟩ ≥ 0 for all u ∈ σ}.
We denote by O(σ) the torus-orbit of X associated to σ ∈ Σ. By the Orbit-
cone-correspondence [1, Theorem 3.2.6], there is a bijective correspondence between
cones of Σ and torus-orbits of X. Moreover, for any σ ∈ Σ, dimO(σ) = dim(X)−
dim(σ). Therefore, for any ray ρ ∈ Σ(1), there is a Weil divisor Dρ defined as
the Zariski closure of the orbit O(ρ). As divisors of the form

∑
ρ∈Σ(1) aρDρ are

precisely the invariant divisors under the torus action on X, we deduce that

WDivT (X) :=
⊕

ρ∈Σ(1)

ZDρ

is the group of invariant Weil divisors on X. In particular,

Theorem 2.2 ([1, Theorem 8.2.3]). The canonical divisor of a toric variety X is
the torus invariant Weil divisor

KX = −
∑

ρ∈Σ(1)

Dρ.

We say that X is smooth (resp. complete) if and only if Σ is smooth (resp.
complete). If X is complete, according to [1, Theorem 4.1.3], we have

(1) |Σ(1)| = dim(XΣ) + rkCl(XΣ) .

2.2. Complete toric surfaces. We assume that N = M = Z2 and the pairing
⟨·, ·⟩ : M ×N → Z is given by

⟨m,u⟩ = a1b1 + a2b2

for m = (a1, a2) ∈ M and u = (b1, b2) ∈ N . We denote by (e1, e2) be the standard
basis of Z2. A vector u ∈ N is primitive if for all k > 1, 1

ku /∈ N . Let Σ be a smooth
complete fan in R2 and X the toric surface associated to Σ. There is a family of
primitive vectors {ui ∈ N : 0 ≤ i ≤ n− 1} with n ≥ 3 such that

• Σ = {0} ∪ {Cone(ui) : 0 ≤ i ≤ n− 1} ∪ {Cone(ui, ui+1) : 0 ≤ i ≤ n− 1}
• det(ui, ui+1) = 1

where un = u0. For any i ∈ {0, . . . , n − 1}, we denote by Di the divisor corre-
sponding to the ray Cone(ui) and we set γi = det(ui−1, ui+1). By [1, Proposition
6.4.4],

(2)

 Di ·Di = −γi
Dk ·Di = 1 if k ∈ {i− 1, i+ 1}
Dk ·Di = 0 if k /∈ {i− 1, i, i+ 1}

.

Let L =
∑

i aiDi be a Cartier divisor on X. By the toric Kleiman Criterion (cf.
[1, Theorem 6.3.13]), L is ample if and only if for any i ∈ {0, . . . , n− 1},
(3) L ·Di = ai+1 + ai−1 − γiai > 0.
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The polytope corresponding to L is given by

(4) P = {m ∈ Z2 : ⟨m,ui⟩ ≥ −ai for i ∈ {0, . . . , n− 1}}

and the facet of P with inward-pointing normal ui is given by

(5) Pi = {m ∈ Z2 : ⟨m,ui⟩ = −ai} ∩ P .

We recall that a lattice M defines a measure ν on MR as the pull-back of the Haar
measure on MR/M. The measure ν is translation invariant and satisfies ν(MR/M) =
1. Let vol(Pi) be the volume of Pi with respect to the measure determined by
M ∩ {m ∈ Z2 : ⟨m,ui⟩ = −ai} in its affine span.

Proposition 2.3. If for all i ∈ {0, . . . , n− 1}, Pi ̸= ∅, then

vol(Pi) = |ai+1 + ai−1 − γi ai|.

Proof. Let mi ∈ M such that ⟨mi, ui⟩ = −ai and ⟨mi, ui+1⟩ = −ai+1. By (5), Pi is
the edge having mi−1 and mi for extremities. Therefore, vol(Pi) = card(Pi∩Z2)−1.

We first show that, for any y = (y1, y2) ∈ Z2,

card
(
{ty : t ∈ [0; 1]} ∩ Z2

)
− 1 = gcd(|y1|, |y2|).

Let A = {ty : t ∈ [0; 1]} ∩ Z2. If y1 = 0, then card(A) = y2 + 1 and when y2 = 0,
card(A) = y1 + 1. For the case y1 ̸= 0 and y2 ̸= 0, we can reduce the study to the
case where y1 > 0 and y2 > 0. If gcd(y1, y2) = ℓ, then for any t ∈ [0; 1], ty ∈ A if
and only if t ∈ {k/ℓ : k ∈ {0, 1, . . . , ℓ}}. Therefore, card(A) = ℓ+ 1.

We write ui = αi e1 + βi e2 with αi, βi ∈ Z. The equations ⟨mi, ui⟩ = −ai and
⟨mi, ui+1⟩ = −ai+1 give

mi =

(
ai+1 βi − ai βi+1

−ai+1 αi + ai αi+1

)
.

Hence,
−−−−−→mi−1 mi =

(
βi(ai+1 + ai−1)− ai(βi+1 + βi−1)

−αi(ai+1 + ai−1) + ai(αi−1 + αi+1)

)
.

As ui−1 − γi ui + ui+1 = 0, we get

−−−−−→mi−1 mi =

(
βi(ai+1 + ai−1)− ai γi βi

−αi(ai+1 + ai−1) + ai γi αi

)
.

Therefore,

vol(Pi) = gcd( |βi(ai+1 + ai−1 − ai γi)|, |αi(ai+1 + ai−1 − ai γi)| )
= |ai+1 + ai−1 − ai γi| gcd(|βi|, |αi|)

As ui is a primitive vector, we get gcd(αi, βi) = 1 and the desired formula. □

Remark 2.4. If P is the polytope corresponding to the polarized toric surface (X,L),
then L ·Di = vol(Pi).

3. Smooth toric log del Pezzo pairs

We use the notations of the previous section. We describe here all log smooth
toric del Pezzo pairs. Let X be a toric surface associated to a fan Σ. By Equation
(1), we have card(Σ(1)) = 2 + rk(Pic(X)).

Lemma 3.1. Let X be a complete smooth toric surface with Picard rank p and D a
reduced invariant divisor of X defined by D =

∑
i∈∆ Di where ∆ ⊆ {0, . . . , n− 1}.

(1) If card(∆) ≥ 3, then −(KX +D) is not ample.
(2) If p ≥ 3 and card(∆) ∈ {1, 2}, then −(KX +D) is not ample.
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Figure 1. Geometry of the fan

Proof. Let ∆′ = {0, . . . , n− 1} \∆. By Theorem 2.2, we have

−(KX +D) =
∑
i∈∆′

Di.

First point. Let P be the polytope corresponding to −(KX + D). By (5),
0 ∈ Pi for all i ∈ ∆. Therefore, there is i ∈ {0, . . . , n − 1} such that vol(Pi) = 0.
Hence, −(KX +D) is not ample.

Second point. For the proof of this point, we will use the geometry of the
fan. Let A = {−αu1 + β u2 : α, β ≥ 0}, B = {−αu1 − β u2 : α, β ≥ 0} and
C = {αu1 − β u2 : α, β ≥ 0} pictured in Figure 1.

We start with the case card∆ = 1. We assume that D = D1. We have −(KX +
D) ·D0 = 1−γ0 and −(KX +D) ·D2 = 1−γ2. If −(KX +D) is ample, then γ0 ≤ 0
and γ2 ≤ 0. As γ2 = det(u1, u3) and γ0 = det(un−1, u1), we deduce that u3 ∈ B
and un−1 ∈ A. When n ≥ 5, this is in contradiction with the fact that if u3 ∈ B,
then un−1 is in B or C. Thus, we deduce that −(KX +D) is not ample.

We now assume that card(∆) = 2. After renumbering the indices, we can assume
that D = D1+Dj with j ∈ {2, . . . , n− 1}. We first assume that j ∈ {3, . . . , n− 1}.
Let P be the polytope of −(KX +D). As 0 ∈ P1 and 0 ∈ Pj , we deduce that 0 is
a vertex of P . Hence, for any k ∈ {2, . . . , j − 1}, vol(Pk) = 0. By (3), we deduce
that −(KX +D) is not ample.

We now assume that D = D1 + D2. We have −(KX + D) · D3 = 1 − γ3 and
−(KX + D) · D0 = 1 − γ0. If −(KX + D) is ample, then γ3 ≤ 0 and γ0 ≤ 0. As
γ3 = det(u2, u4) and γ0 = det(un−1, u1), we deduce that u4 ∈ C and un−1 ∈ A. If
n ≥ 6, this situation contradicts the positioning order of vectors ui. If n = 5, we
have u4 ∈ A and u4 ∈ C, this is not possible. Therefore, we deduce that −(KX+D)
is not ample. □

If ∆ ̸= ∅, according to Lemma 3.1, it is enough to study the positivity of
−(KX + D) when rkPic(X) ∈ {1, 2} and card(∆) ∈ {1, 2}. Note that the only
smooth projective toric surface with Picard number one is the projective space P2.
The rays of the fan of P2 are the half-lines generated by u1 = e1, u2 = e2 and
u0 = −(e1 + e2).

Proposition 3.2. If X = P2, then the log smooth pair (X,D) is toric log del Pezzo
if and only if D ∈ {D0, D1, D2} ∪ {D0 +D1, D0 +D2, D1 +D2}.

Proof. We have the linear equivalence D1 ∼lin D0 and D2 ∼lin D0. By Theorem
2.2, we have KX = −(D0 + D1 + D2), i.e −KX ∼lin 3D0. As D0 is ample, we
deduce that −(KX +D) is not ample if and only if D = D1 +D2 +D3. □

By [3, Theorem 1], every smooth toric surfaces of Picard rank two if of the
P(OP1 ⊕ OP1(r)) with r ∈ N. Let X = P(OP1 ⊕ OP1(r)). The rays of the fan of X
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are the half lines generated by the vectors u1 = e1, u2 = e2, u3 = −e1 + r e2 and
u0 = −e2. The numbers γi are given by γ0 = −r, γ1 = 0, γ2 = r and γ3 = 0. By
(3), the divisor L = a0 D0 + a1 D1 + a2 D2 + a3 D3 is ample if and only if

a0 + a2 > 0 , a1 + a3 > r a2 , a1 + a3 > −r a0

if and only if

(6) a0 + a2 > 0 and a1 + a3 > r a2 .

Proposition 3.3. Let X = P (OP1 ⊕ OP1(r)) with r ∈ N. Then :
(1) −KX or −(KX +D0) are ample if and only if r ∈ {0, 1}.
(2) If D ∈ {D1, D3, D0 +D1, D0 +D3}, −(KX +D) is ample if and only if

r = 0.
(3) If D ∈ {D2, D2 +D1, D2 +D3}, −(KX +D) is ample for any r ∈ N.
(4) If D ∈ {D0 +D2, D1 +D3}, −(KX +D) is not ample for any r ∈ N.

Proof. As −KX = D0 +D1 +D2 +D3 and D1 ∼lin D3, D2 ∼lin D0 − r D3, we get
the following linear equivalence of divisors:

−KX ∼lin 2D0 + (2− r)D3

−(KX +D0) ∼lin D0 + (2− r)D3

−(KX +D2) ∼lin D0 + 2D3

−(KX +D3) ∼lin 2D0 + (1− r)D3

−(KX +D0 +D2) ∼lin 2D3

−(KX +D0 +D3) ∼lin D0 + (1− r)D3

−(KX +D2 +D3) ∼lin D0 +D3

−(KX +D1 +D3) ∼lin 2D0 − rD3

If a1 = a2 = 0, the condition (6) becomes a0 > 0 and a3 > 0. This allows us to
conclude. □

Remark 3.4. Propositions 3.2 and 3.3 give Theorem 1.1.
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