CLASSIFICATION OF LOG SMOOTH TORIC DEL PEZZO PAIRS

ACHIM NAPAME

ABsTrACT. We give a description of all log-Fano pairs (X, D) where X is a
smooth toric surface and D a reduced simple normal crossing divisor such that
D is a torus invariant divisor.

1. INTRODUCTION

The Enriques—Kodaira classification gives a classification of complex compact
surfaces using their Kodaira dimension. Nonsingular projective minimal surfaces
with Kodaira dimension —oo have an important position in this problem of classifi-
cation, they correspond in the MMP-terminology to Mori’s fiber spaces [5, Theorem
1.5.5]. In this paper, we are interested by log smooth toric del Pezzo pairs.

A n-dimensional toric variety is an irreducible variety X containing a torus
T ~ (C*)™ as a Zariski open subset such that the action of T on itself extends to
an algebraic action of T on X. Given a simple normal crossing divisor D on X, we
say that (X, D) is a log smooth toric del Pezzo pair if X is a smooth toric surface
and D a torus-invariant divisor such that —(Kx + D) is ample.

Maeda [4] gives a classification of logarithmic Del Pezzo surfaces using Fujita’s
classification theorem of polarized varieties of A-genera zero [2]. In this paper, we
give a proof of this classification on toric surfaces using their fans or polytopes. We
denote by F,. the Hirzebruch suface P(Op: & Op:(7)).

Theorem 1.1. Let X be a smooth complete toric surface and D a reduced torus-
invariant divisor on X. Then, the pair (X, D) is log Del Pezzo if:
(1) X =P2% and D = D' where D' is a line;
= an =D+ where an are two lines;
2) X =P2 and D = D' + D" where D' and D" le
=F, an = where 18 a section wit = -7y
3) X=F d D = D' where D' i j ith (D')?
=1, an = + where s a section wit = —r an
4) X =F d D = D'+ D" where D' i ; h (D')? d D"
is a fiber;
= an = where 18 a section such that =1;
5) X =F d D = D" where D' i ; h that (D")? =1
(6) X =Fy and D = D" where D" is a fiber.
The paper is organized as follows: in Section 2, we gives some properties of

polarized toric surfaces and their polytopes and in Section 3, we give the proof of
Theorem 1.1.

Acknowledgments. I would like to thank Hendrik SUss for showing me Maeda’s
paper [4].

2. AMPLE DIVISORS ON TORIC SURFACES

2.1. Toric varieties. Let N be a rank n lattice and M = Homg(N,Z) be its dual
with pairing (-,-) : M x N — Z. Then N is the lattice of one-parameter subgroups
of the n-dimensional complex torus Ty := N ®z C* = Homyz(M,C*). We call M
the lattice of characters of Tyy. For K = R or C, we define Nx = N ®z K and
Mg = M ®;K. A fan ¥ in Ny is a set of rational strongly convex polyhedral cones
in Nk such that:
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e Each face of a cone in X is also a cone in ;

e The intersection of two cones in ¥ is a face of each.
A cone o in Ny is smooth if its minimal generators form part of a Z-basis of N.
A fan ¥ is smooth if every cone ¢ in ¥ is smooth. The support of ¥ is given by
|X] := U,cx, 0 and we say that X is complete if |X| = Ng.

Notation 2.1. For a finite subset S C Ng, we denote by Cone(S) the cone gener-
ated by S. For a fan ¥, we denote by 3(r) the set of r-dimensional cones of ¥ and
by u, € N the minimal generator of the ray p € £(1).

Let X be the toric variety associated to a fan ¥ in Ng with torus T'= N ®y C*
[1, Chapter 3]. The variety X is obtained by gluing affine charts (U,),es where
U, = Spec(C[S,]) with C[S,] the semi-group algebra of

Sy =0"NM={meM:(m,u) >0 for all u € o}.
We denote by O(o) the torus-orbit of X associated to ¢ € ¥. By the Orbit-
cone-correspondence [1, Theorem 3.2.6], there is a bijective correspondence between
cones of ¥ and torus-orbits of X. Moreover, for any o € X, dimO(c) = dim(X) —
dim(c). Therefore, for any ray p € (1), there is a Weil divisor D, defined as
the Zariski closure of the orbit O(p). As divisors of the form 3 ) a,D, are
precisely the invariant divisors under the torus action on X, we deduce that

WDivr(X) := €p zD,
peEX(1)
is the group of invariant Weil divisors on X. In particular,

Theorem 2.2 ([1, Theorem 8.2.3]). The canonical divisor of a toric variety X is
the torus invariant Weil divisor

Kx=- YD,
peEX(1)

We say that X is smooth (resp. complete) if and only if ¥ is smooth (resp.
complete). If X is complete, according to [1, Theorem 4.1.3|, we have
(1) [2(1)] = dim(Xy) + 1k Cl(Xy) .
2.2. Complete toric surfaces. We assume that N = M = Z? and the pairing
(-, : M x N — Z is given by

(m,u) = a1by + asby
for m = (a1,a2) € M and u = (b1,b2) € N. We denote by (e1, e2) be the standard
basis of Z2. A vector u € N is primitive if for all k > 1, tu ¢ N. Let ¥ be a smooth
complete fan in R? and X the toric surface associated to ¥. There is a family of
primitive vectors {u; € N : 0 <i <n — 1} with n > 3 such that
e ¥ ={0}U{Cone(u;):0<i<n-—1}U{Cone(u;,u;y1):0<i<n-—1}
L] det(ui,uiﬂ) =1
where w, = ug. For any i € {0,...,n — 1}, we denote by D, the divisor corre-
sponding to the ray Cone(u;) and we set y; = det(u;—1,u;+1). By [1, Proposition
6.4.4],
D;-Di=—i
(2) Di-Di=1 ifke{i—1,i+1}
Dy-D;=0 ifk¢{i—1,i,94+1}

Let L =), a;D; be a Cartier divisor on X. By the toric Kleiman Criterion (cf.

[1, Theorem 6.3.13|), L is ample if and only if for any 7 € {0,...,n — 1},

(3) L-D;=a;11+aj—1 —va; >0.
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The polytope corresponding to L is given by
(4) P={mcZ?: (m,u;) > —a; fori € {0,...,n—1}}
and the facet of P with inward-pointing normal w; is given by
(5) Pi={mecZ?: (mu)=—a}NP.

We recall that a lattice M defines a measure v on Mg as the pull-back of the Haar
measure on Mg /M. The measure v is translation invariant and satisfies v(Mg/M) =
1. Let vol(P;) be the volume of P, with respect to the measure determined by
Mn{m e Z?: (m,u;) = —a;} in its affine span.

Proposition 2.3. If for alli € {0,...,n— 1}, P, # &, then
vol(P;) = |ajr1 + ai—1 — i a4l
Proof. Let m; € M such that (m;,u;) = —a; and (m;, u;11) = —a;4+1. By (5), P; is

the edge having m;_1 and m; for extremities. Therefore, vol(P;) = card(P;NZ?)—1.
We first show that, for any y = (y1,v2) € Z2,

Card({ty :t € [0;1]} ﬁZz) — 1= ged(|y1l, [y2])-

Let A= {ty:te[0;1]}NZ2 If y; = 0, then card(A) = y + 1 and when ys = 0,
card(A) = y; + 1. For the case y; # 0 and ys # 0, we can reduce the study to the
case where y; > 0 and yo > 0. If ged(y1,y2) = ¢, then for any ¢t € [0;1], ty € A if
and only if t € {k/¢:k €{0,1,...,¢}}. Therefore, card(A) = ¢+ 1.

We write u; = a; e1 + 5; e2 with «;, ; € Z. The equations (m;,u;) = —a; and

<mi7ui+1> = —ai+1 give
m; = ( aiv1 Bi — a; Bit1 )
—Qi41 O + G iy
Hence,
T = ( Bi(aiz1 + ai—1) — a;i(Biy1 + Bi—1) )
R —ai(aig1 + ai—1) + a;i (i1 + @igr)
As ui—1 — v u; +uip1 =0, we get
- ( Bi(aiz1 + ai—1) — a;vi Bi )
m;—1Mm; = .
—ai(ait1 +ai—1) +a;vio
Therefore,
vol(P;) = ged(|Bi(aiyr + ai—1 — a;vi)l, |ai(aivr + aim1 — aivi)|)
= lait1 + a1 — a; vl ged(|Bil, [a])
As w; is a primitive vector, we get ged(a;, 8;) = 1 and the desired formula. O

Remark 2.4. If P is the polytope corresponding to the polarized toric surface (X, L),
then L - D; = vol(F;).

3. SMOOTH TORIC LOG DEL PEZZO PAIRS

We use the notations of the previous section. We describe here all log smooth
toric del Pezzo pairs. Let X be a toric surface associated to a fan 3. By Equation
(1), we have card(X(1)) = 2 + rk(Pic(X)).

Lemma 3.1. Let X be a complete smooth toric surface with Picard rankp and D a
reduced invariant divisor of X defined by D =} ;.\ D; where A C{0,...,n —1}.

(1) If card(A) > 3, then —(Kx + D) is not ample.
(2) If p > 3 and card(A) € {1,2}, then —(Kx + D) is not ample.
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FIGURE 1. Geometry of the fan

Proof. Let A’ ={0,...,n—1} \ A. By Theorem 2.2, we have

~(Kx+D)=>_D;.
€A’

First point. Let P be the polytope corresponding to —(Kx + D). By (5
0 € P, for all i € A. Therefore, there is ¢ € {0,...,n — 1} such that vol(P;) =
Hence, —(Kx + D) is not ample.

Second point. For the proof of this point, we will use the geometry of the
fan. Let A = {—au; + fuz : o, > 0}, B = {—au; — Bus : o, > 0} and
C ={au; — Bus:a,B >0} pictured in Figure 1.

We start with the case card A = 1. We assume that D = D;. We have —(Kx +
D) Dyg=1—7pand —(Kx+D) Dy =1—~2. If —(Kx + D) is ample, then v5 < 0
and v2 < 0. As vo = det(uy,u3) and y9 = det(u,—1,u1), we deduce that ug € B
and u,_1 € A. When n > 5, this is in contradiction with the fact that if us € B,
then u,_1 is in B or C. Thus, we deduce that —(Kx + D) is not ample.

We now assume that card(A) = 2. After renumbering the indices, we can assume
that D = Dy + D; with j € {2,...,n—1}. We first assume that j € {3,...,n—1}.
Let P be the polytope of —(Kx + D). As 0 € P; and 0 € P;, we deduce that 0 is
a vertex of P. Hence, for any k € {2,...,7 — 1}, vol(Px) = 0. By (3), we deduce
that —(Kx + D) is not ample.

We now assume that D = Dy + Dy. We have —(Kx + D) - D3 = 1 — v3 and
—(Kx+ D) -Dy=1—7y. If =(Kx + D) is ample, then v3 < 0 and 79 < 0. As
v3 = det(uz,uq) and g = det(up—_1,u1), we deduce that uy € C and u,—1 € A. If
n > 6, this situation contradicts the positioning order of vectors u;. If n = 5, we
have uy € A and uy € C, this is not possible. Therefore, we deduce that —(Kx + D)
is not ample. O

);
0.

If A # @, according to Lemma 3.1, it is enough to study the positivity of
—(Kx + D) when rkPic(X) € {1,2} and card(A) € {1,2}. Note that the only
smooth projective toric surface with Picard number one is the projective space P2.
The rays of the fan of P? are the half-lines generated by u1 = e1, us = es and
Ug = —(61 + 62).

Proposition 3.2. If X = P2, then the log smooth pair (X, D) is toric log del Pezzo
Zf and OTlly ZfD S {l)o7 Dy, DQ} @] {DO + D1,Dg+ Dy, Dy + DQ}

Proof. We have the linear equivalence Dy ~);, Dy and Dy ~y, Do. By Theorem
2.2, we have Kx = —(Dg + D1 + D3), i.e —Kx ~in 3Dg. As Dy is ample, we
deduce that —(Kx + D) is not ample if and only if D = Dy + Dy + Ds. O

By [3, Theorem 1], every smooth toric surfaces of Picard rank two if of the
P(Opr & Op1(r)) with r € N. Let X = P(0p1 @ Op1(r)). The rays of the fan of X
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are the half lines generated by the vectors u; = ey, us = ez, u3 = —e; + res and
ug = —ey. The numbers ~; are given by 79 = —r, 71 =0, 72 = r and 73 = 0. By
(3), the divisor L = ag Do + a1 D1 + ag D2 + a3 D3 is ample if and only if

apg+azy >0, a1 +a3>raz, ag +az > —rag
if and only if
(6) ap+as >0 and ay+as3>ras.

Proposition 3.3. Let X =P (Op1 @ Op1 (1)) with r € N. Then :
(1) —Kx or —(Kx + Dg) are ample if and only if r € {0, 1}.
(2) If D € {D1, D3, Dy + D1, Dy + D3}, —(Kx + D) is ample if and only if
r=0.
(8) If D € {Ds, Dy + Dy, Do+ D3}, —(Kx + D) is ample for any r € N.
(4) If D € {Dy + Dy, D1 + D3}, —(Kx + D) is not ample for any r € N.

PT’OOf. As 7KX = DO + D1 + D2 + D3 and D1 ~lin Dg, D2 ~lin DO — ’I’D37 we get
the following linear equivalence of divisors:

—Kx ~iin 2D + (2 —1)D3 —(Kx + Do + D3) ~iin 2D3

—(Kx + Do) ~1in Do + (2 —7)D3 —(Kx + Do + D3) ~1in Do+ (1 —7)D3
—(Kx + D3) ~1in Do +2D3 —(Kx + D3 + D3) ~iin Do + D3
—(Kx + D3) ~1in 2Dg + (1 — 1) D3 —(Kx + D1+ D3) ~in 2D — rD3

If a1 = az = 0, the condition (6) becomes ag > 0 and a3z > 0. This allows us to
conclude. 0

Remark 3.4. Propositions 3.2 and 3.3 give Theorem 1.1.
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