CLASSIFICATION OF LOG SMOOTH TORIC DEL PEZZO PAIRS

ACHIM NAPAME

Abstract

We give a description of all log-Fano pairs (X, D) where X is a smooth toric surface and D a reduced simple normal crossing divisor such that D is a torus invariant divisor.

1. Introduction

The Enriques-Kodaira classification gives a classification of complex compact surfaces using their Kodaira dimension. Nonsingular projective minimal surfaces with Kodaira dimension $-\infty$ have an important position in this problem of classification, they correspond in the MMP-terminology to Mori's fiber spaces [5, Theorem 1.5.5]. In this paper, we are interested by log smooth toric del Pezzo pairs.

A n-dimensional toric variety is an irreducible variety X containing a torus $T \simeq\left(\mathbb{C}^{*}\right)^{n}$ as a Zariski open subset such that the action of T on itself extends to an algebraic action of T on X. Given a simple normal crossing divisor D on X, we say that (X, D) is a log smooth toric del Pezzo pair if X is a smooth toric surface and D a torus-invariant divisor such that $-\left(K_{X}+D\right)$ is ample.

Maeda [4] gives a classification of logarithmic Del Pezzo surfaces using Fujita's classification theorem of polarized varieties of Δ-genera zero [2]. In this paper, we give a proof of this classification on toric surfaces using their fans or polytopes. We denote by \mathbb{F}_{r} the Hirzebruch suface $\mathbb{P}\left(\mathscr{O}_{\mathbb{P}^{1}} \oplus \mathscr{O}_{\mathbb{P}^{1}}(r)\right)$.
Theorem 1.1. Let X be a smooth complete toric surface and D a reduced torusinvariant divisor on X. Then, the pair (X, D) is log Del Pezzo if:
(1) $X=\mathbb{P}^{2}$ and $D=D^{\prime}$ where D^{\prime} is a line;
(2) $X=\mathbb{P}^{2}$ and $D=D^{\prime}+D^{\prime \prime}$ where D^{\prime} and $D^{\prime \prime}$ are two lines;
(3) $X=\mathbb{F}_{r}$ and $D=D^{\prime}$ where D^{\prime} is a section with $\left(D^{\prime}\right)^{2}=-r$;
(4) $X=\mathbb{F}_{r}$ and $D=D^{\prime}+D^{\prime \prime}$ where D^{\prime} is a section with $\left(D^{\prime}\right)^{2}=-r$ and $D^{\prime \prime}$ is a fiber;
(5) $X=\mathbb{F}_{1}$ and $D=D^{\prime}$ where D^{\prime} is a section such that $\left(D^{\prime}\right)^{2}=1$;
(6) $X=\mathbb{F}_{0}$ and $D=D^{\prime \prime}$ where $D^{\prime \prime}$ is a fiber.

The paper is organized as follows: in Section 2, we gives some properties of polarized toric surfaces and their polytopes and in Section 3, we give the proof of Theorem 1.1.

Acknowledgments. I would like to thank Hendrik SÜSS for showing me Maeda's paper [4].

2. Ample divisors on toric surfaces

2.1. Toric varieties. Let N be a rank n lattice and $M=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$ be its dual with pairing $\langle\cdot, \cdot\rangle: M \times N \rightarrow \mathbb{Z}$. Then N is the lattice of one-parameter subgroups of the n-dimensional complex torus $T_{N}:=N \otimes_{\mathbb{Z}} \mathbb{C}^{*}=\operatorname{Hom}_{\mathbb{Z}}\left(M, \mathbb{C}^{*}\right)$. We call M the lattice of characters of T_{N}. For $\mathbb{K}=\mathbb{R}$ or \mathbb{C}, we define $N_{\mathbb{K}}=N \otimes_{\mathbb{Z}} \mathbb{K}$ and $M_{\mathbb{K}}=M \otimes_{\mathbb{Z}} \mathbb{K}$. A fan Σ in $N_{\mathbb{R}}$ is a set of rational strongly convex polyhedral cones in $N_{\mathbb{R}}$ such that:

- Each face of a cone in Σ is also a cone in Σ;
- The intersection of two cones in Σ is a face of each.

A cone σ in $N_{\mathbb{R}}$ is smooth if its minimal generators form part of a \mathbb{Z}-basis of N. A fan Σ is smooth if every cone σ in Σ is smooth. The support of Σ is given by $|\Sigma|:=\bigcup_{\sigma \in \Sigma} \sigma$ and we say that Σ is complete if $|\Sigma|=N_{\mathbb{R}}$.
Notation 2.1. For a finite subset $S \subseteq N_{\mathbb{R}}$, we denote by Cone (S) the cone generated by S. For a fan Σ, we denote by $\Sigma(r)$ the set of r-dimensional cones of Σ and by $u_{\rho} \in N$ the minimal generator of the ray $\rho \in \Sigma(1)$.

Let X be the toric variety associated to a fan Σ in $N_{\mathbb{R}}$ with torus $T=N \otimes_{\mathbb{Z}} \mathbb{C}^{*}$ [1, Chapter 3]. The variety X is obtained by gluing affine charts $\left(U_{\sigma}\right)_{\sigma \in \Sigma}$ where $U_{\sigma}=\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)$ with $\mathbb{C}\left[S_{\sigma}\right]$ the semi-group algebra of

$$
S_{\sigma}=\sigma^{\vee} \cap M=\{m \in M:\langle m, u\rangle \geq 0 \text { for all } u \in \sigma\}
$$

We denote by $O(\sigma)$ the torus-orbit of X associated to $\sigma \in \Sigma$. By the Orbit-cone-correspondence [1, Theorem 3.2.6], there is a bijective correspondence between cones of Σ and torus-orbits of X. Moreover, for any $\sigma \in \Sigma, \operatorname{dim} O(\sigma)=\operatorname{dim}(X)-$ $\operatorname{dim}(\sigma)$. Therefore, for any ray $\rho \in \Sigma(1)$, there is a Weil divisor D_{ρ} defined as the Zariski closure of the orbit $O(\rho)$. As divisors of the form $\sum_{\rho \in \Sigma(1)} a_{\rho} D_{\rho}$ are precisely the invariant divisors under the torus action on X, we deduce that

$$
\operatorname{WDiv}_{T}(X):=\bigoplus_{\rho \in \Sigma(1)} \mathbb{Z} D_{\rho}
$$

is the group of invariant Weil divisors on X. In particular,
Theorem 2.2 ([1, Theorem 8.2.3]). The canonical divisor of a toric variety X is the torus invariant Weil divisor

$$
K_{X}=-\sum_{\rho \in \Sigma(1)} D_{\rho}
$$

We say that X is smooth (resp. complete) if and only if Σ is smooth (resp. complete). If X is complete, according to [1, Theorem 4.1.3], we have

$$
\begin{equation*}
|\Sigma(1)|=\operatorname{dim}\left(X_{\Sigma}\right)+\operatorname{rkCl}\left(X_{\Sigma}\right) \tag{1}
\end{equation*}
$$

2.2. Complete toric surfaces. We assume that $N=M=\mathbb{Z}^{2}$ and the pairing $\langle\cdot, \cdot\rangle: M \times N \rightarrow \mathbb{Z}$ is given by

$$
\langle m, u\rangle=a_{1} b_{1}+a_{2} b_{2}
$$

for $m=\left(a_{1}, a_{2}\right) \in M$ and $u=\left(b_{1}, b_{2}\right) \in N$. We denote by $\left(e_{1}, e_{2}\right)$ be the standard basis of \mathbb{Z}^{2}. A vector $u \in N$ is primitive if for all $k>1, \frac{1}{k} u \notin N$. Let Σ be a smooth complete fan in \mathbb{R}^{2} and X the toric surface associated to Σ. There is a family of primitive vectors $\left\{u_{i} \in N: 0 \leq i \leq n-1\right\}$ with $n \geq 3$ such that

- $\Sigma=\{0\} \cup\left\{\operatorname{Cone}\left(u_{i}\right): 0 \leq i \leq n-1\right\} \cup\left\{\operatorname{Cone}\left(u_{i}, u_{i+1}\right): 0 \leq i \leq n-1\right\}$
- $\operatorname{det}\left(u_{i}, u_{i+1}\right)=1$
where $u_{n}=u_{0}$. For any $i \in\{0, \ldots, n-1\}$, we denote by D_{i} the divisor corresponding to the ray $\operatorname{Cone}\left(u_{i}\right)$ and we set $\gamma_{i}=\operatorname{det}\left(u_{i-1}, u_{i+1}\right)$. By [1, Proposition 6.4.4],

$$
\left\{\begin{array}{ll}
D_{i} \cdot D_{i}=-\gamma_{i} & \tag{2}\\
D_{k} \cdot D_{i}=1 & \text { if } k \in\{i-1, i+1\} \\
D_{k} \cdot D_{i}=0 & \text { if } k \notin\{i-1, i, i+1\}
\end{array} .\right.
$$

Let $L=\sum_{i} a_{i} D_{i}$ be a Cartier divisor on X. By the toric Kleiman Criterion (cf. [1, Theorem 6.3.13]), L is ample if and only if for any $i \in\{0, \ldots, n-1\}$,

$$
\begin{equation*}
L \cdot D_{i}=a_{i+1}+a_{i-1}-\gamma_{i} a_{i}>0 \tag{3}
\end{equation*}
$$

The polytope corresponding to L is given by

$$
\begin{equation*}
P=\left\{m \in \mathbb{Z}^{2}:\left\langle m, u_{i}\right\rangle \geq-a_{i} \text { for } i \in\{0, \ldots, n-1\}\right\} \tag{4}
\end{equation*}
$$

and the facet of P with inward-pointing normal u_{i} is given by

$$
\begin{equation*}
P_{i}=\left\{m \in \mathbb{Z}^{2}:\left\langle m, u_{i}\right\rangle=-a_{i}\right\} \cap P . \tag{5}
\end{equation*}
$$

We recall that a lattice M defines a measure ν on $\mathrm{M}_{\mathbb{R}}$ as the pull-back of the Haar measure on $\mathrm{M}_{\mathbb{R}} / \mathrm{M}$. The measure ν is translation invariant and satisfies $\nu\left(\mathrm{M}_{\mathbb{R}} / \mathrm{M}\right)=$ 1. Let $\operatorname{vol}\left(P_{i}\right)$ be the volume of P_{i} with respect to the measure determined by $M \cap\left\{m \in \mathbb{Z}^{2}:\left\langle m, u_{i}\right\rangle=-a_{i}\right\}$ in its affine span.

Proposition 2.3. If for all $i \in\{0, \ldots, n-1\}, P_{i} \neq \varnothing$, then

$$
\operatorname{vol}\left(P_{i}\right)=\left|a_{i+1}+a_{i-1}-\gamma_{i} a_{i}\right| .
$$

Proof. Let $m_{i} \in M$ such that $\left\langle m_{i}, u_{i}\right\rangle=-a_{i}$ and $\left\langle m_{i}, u_{i+1}\right\rangle=-a_{i+1}$. By (5), P_{i} is the edge having m_{i-1} and m_{i} for extremities. Therefore, $\operatorname{vol}\left(P_{i}\right)=\operatorname{card}\left(P_{i} \cap \mathbb{Z}^{2}\right)-1$.

We first show that, for any $y=\left(y_{1}, y_{2}\right) \in \mathbb{Z}^{2}$,

$$
\operatorname{card}\left(\{t y: t \in[0 ; 1]\} \cap \mathbb{Z}^{2}\right)-1=\operatorname{gcd}\left(\left|y_{1}\right|,\left|y_{2}\right|\right)
$$

Let $A=\{t y: t \in[0 ; 1]\} \cap \mathbb{Z}^{2}$. If $y_{1}=0$, then $\operatorname{card}(A)=y_{2}+1$ and when $y_{2}=0$, $\operatorname{card}(A)=y_{1}+1$. For the case $y_{1} \neq 0$ and $y_{2} \neq 0$, we can reduce the study to the case where $y_{1}>0$ and $y_{2}>0$. If $\operatorname{gcd}\left(y_{1}, y_{2}\right)=\ell$, then for any $t \in[0 ; 1], t y \in A$ if and only if $t \in\{k / \ell: k \in\{0,1, \ldots, \ell\}\}$. Therefore, $\operatorname{card}(A)=\ell+1$.

We write $u_{i}=\alpha_{i} e_{1}+\beta_{i} e_{2}$ with $\alpha_{i}, \beta_{i} \in \mathbb{Z}$. The equations $\left\langle m_{i}, u_{i}\right\rangle=-a_{i}$ and $\left\langle m_{i}, u_{i+1}\right\rangle=-a_{i+1}$ give

$$
m_{i}=\binom{a_{i+1} \beta_{i}-a_{i} \beta_{i+1}}{-a_{i+1} \alpha_{i}+a_{i} \alpha_{i+1}}
$$

Hence,

$$
\overrightarrow{m_{i-1} m_{i}}=\binom{\beta_{i}\left(a_{i+1}+a_{i-1}\right)-a_{i}\left(\beta_{i+1}+\beta_{i-1}\right)}{-\alpha_{i}\left(a_{i+1}+a_{i-1}\right)+a_{i}\left(\alpha_{i-1}+\alpha_{i+1}\right)} .
$$

As $u_{i-1}-\gamma_{i} u_{i}+u_{i+1}=0$, we get

$$
\overrightarrow{m_{i-1} m_{i}}=\binom{\beta_{i}\left(a_{i+1}+a_{i-1}\right)-a_{i} \gamma_{i} \beta_{i}}{-\alpha_{i}\left(a_{i+1}+a_{i-1}\right)+a_{i} \gamma_{i} \alpha_{i}} .
$$

Therefore,

$$
\begin{aligned}
\operatorname{vol}\left(P_{i}\right) & =\operatorname{gcd}\left(\left|\beta_{i}\left(a_{i+1}+a_{i-1}-a_{i} \gamma_{i}\right)\right|,\left|\alpha_{i}\left(a_{i+1}+a_{i-1}-a_{i} \gamma_{i}\right)\right|\right) \\
& =\left|a_{i+1}+a_{i-1}-a_{i} \gamma_{i}\right| \operatorname{gcd}\left(\left|\beta_{i}\right|,\left|\alpha_{i}\right|\right)
\end{aligned}
$$

As u_{i} is a primitive vector, we get $\operatorname{gcd}\left(\alpha_{i}, \beta_{i}\right)=1$ and the desired formula.
Remark 2.4. If P is the polytope corresponding to the polarized toric surface (X, L), then $L \cdot D_{i}=\operatorname{vol}\left(P_{i}\right)$.

3. Smooth toric log del Pezzo pairs

We use the notations of the previous section. We describe here all log smooth toric del Pezzo pairs. Let X be a toric surface associated to a fan Σ. By Equation (1), we have $\operatorname{card}(\Sigma(1))=2+\operatorname{rk}(\operatorname{Pic}(X))$.

Lemma 3.1. Let X be a complete smooth toric surface with Picard rank pand D a reduced invariant divisor of X defined by $D=\sum_{i \in \Delta} D_{i}$ where $\Delta \subseteq\{0, \ldots, n-1\}$.
(1) If $\operatorname{card}(\Delta) \geq 3$, then $-\left(K_{X}+D\right)$ is not ample.
(2) If $p \geq 3$ and $\operatorname{card}(\Delta) \in\{1,2\}$, then $-\left(K_{X}+D\right)$ is not ample.

Figure 1. Geometry of the fan

Proof. Let $\Delta^{\prime}=\{0, \ldots, n-1\} \backslash \Delta$. By Theorem 2.2, we have

$$
-\left(K_{X}+D\right)=\sum_{i \in \Delta^{\prime}} D_{i}
$$

First point. Let P be the polytope corresponding to $-\left(K_{X}+D\right)$. By (5), $0 \in P_{i}$ for all $i \in \Delta$. Therefore, there is $i \in\{0, \ldots, n-1\}$ such that $\operatorname{vol}\left(P_{i}\right)=0$. Hence, $-\left(K_{X}+D\right)$ is not ample.

Second point. For the proof of this point, we will use the geometry of the fan. Let $A=\left\{-\alpha u_{1}+\beta u_{2}: \alpha, \beta \geq 0\right\}, B=\left\{-\alpha u_{1}-\beta u_{2}: \alpha, \beta \geq 0\right\}$ and $C=\left\{\alpha u_{1}-\beta u_{2}: \alpha, \beta \geq 0\right\}$ pictured in Figure 1.

We start with the case card $\Delta=1$. We assume that $D=D_{1}$. We have $-\left(K_{X}+\right.$ $D) \cdot D_{0}=1-\gamma_{0}$ and $-\left(K_{X}+D\right) \cdot D_{2}=1-\gamma_{2}$. If $-\left(K_{X}+D\right)$ is ample, then $\gamma_{0} \leq 0$ and $\gamma_{2} \leq 0$. As $\gamma_{2}=\operatorname{det}\left(u_{1}, u_{3}\right)$ and $\gamma_{0}=\operatorname{det}\left(u_{n-1}, u_{1}\right)$, we deduce that $u_{3} \in B$ and $u_{n-1} \in A$. When $n \geq 5$, this is in contradiction with the fact that if $u_{3} \in B$, then u_{n-1} is in B or C. Thus, we deduce that $-\left(K_{X}+D\right)$ is not ample.

We now assume that $\operatorname{card}(\Delta)=2$. After renumbering the indices, we can assume that $D=D_{1}+D_{j}$ with $j \in\{2, \ldots, n-1\}$. We first assume that $j \in\{3, \ldots, n-1\}$. Let P be the polytope of $-\left(K_{X}+D\right)$. As $0 \in P_{1}$ and $0 \in P_{j}$, we deduce that 0 is a vertex of P. Hence, for any $k \in\{2, \ldots, j-1\}$, $\operatorname{vol}\left(P_{k}\right)=0$. By (3), we deduce that $-\left(K_{X}+D\right)$ is not ample.

We now assume that $D=D_{1}+D_{2}$. We have $-\left(K_{X}+D\right) \cdot D_{3}=1-\gamma_{3}$ and $-\left(K_{X}+D\right) \cdot D_{0}=1-\gamma_{0}$. If $-\left(K_{X}+D\right)$ is ample, then $\gamma_{3} \leq 0$ and $\gamma_{0} \leq 0$. As $\gamma_{3}=\operatorname{det}\left(u_{2}, u_{4}\right)$ and $\gamma_{0}=\operatorname{det}\left(u_{n-1}, u_{1}\right)$, we deduce that $u_{4} \in C$ and $u_{n-1} \in A$. If $n \geq 6$, this situation contradicts the positioning order of vectors u_{i}. If $n=5$, we have $u_{4} \in A$ and $u_{4} \in C$, this is not possible. Therefore, we deduce that $-\left(K_{X}+D\right)$ is not ample.

If $\Delta \neq \varnothing$, according to Lemma 3.1, it is enough to study the positivity of $-\left(K_{X}+D\right)$ when $\operatorname{rk} \operatorname{Pic}(X) \in\{1,2\}$ and $\operatorname{card}(\Delta) \in\{1,2\}$. Note that the only smooth projective toric surface with Picard number one is the projective space \mathbb{P}^{2}. The rays of the fan of \mathbb{P}^{2} are the half-lines generated by $u_{1}=e_{1}, u_{2}=e_{2}$ and $u_{0}=-\left(e_{1}+e_{2}\right)$.
Proposition 3.2. If $X=\mathbb{P}^{2}$, then the log smooth pair (X, D) is toric log del Pezzo if and only if $D \in\left\{D_{0}, D_{1}, D_{2}\right\} \cup\left\{D_{0}+D_{1}, D_{0}+D_{2}, D_{1}+D_{2}\right\}$.

Proof. We have the linear equivalence $D_{1} \sim_{\operatorname{lin}} D_{0}$ and $D_{2} \sim_{\operatorname{lin}} D_{0}$. By Theorem 2.2, we have $K_{X}=-\left(D_{0}+D_{1}+D_{2}\right)$, i.e $-K_{X} \sim_{\text {lin }} 3 D_{0}$. As D_{0} is ample, we deduce that $-\left(K_{X}+D\right)$ is not ample if and only if $D=D_{1}+D_{2}+D_{3}$.

By [3, Theorem 1], every smooth toric surfaces of Picard rank two if of the $\mathbb{P}\left(\mathscr{O}_{\mathbb{P}^{1}} \oplus \mathscr{O}_{\mathbb{P}^{1}}(r)\right)$ with $r \in \mathbb{N}$. Let $X=\mathbb{P}\left(\mathscr{O}_{\mathbb{P}^{1}} \oplus \mathscr{O}_{\mathbb{P}^{1}}(r)\right)$. The rays of the fan of X
are the half lines generated by the vectors $u_{1}=e_{1}, u_{2}=e_{2}, u_{3}=-e_{1}+r e_{2}$ and $u_{0}=-e_{2}$. The numbers γ_{i} are given by $\gamma_{0}=-r, \gamma_{1}=0, \gamma_{2}=r$ and $\gamma_{3}=0$. By (3), the divisor $L=a_{0} D_{0}+a_{1} D_{1}+a_{2} D_{2}+a_{3} D_{3}$ is ample if and only if

$$
a_{0}+a_{2}>0, a_{1}+a_{3}>r a_{2}, a_{1}+a_{3}>-r a_{0}
$$

if and only if

$$
\begin{equation*}
a_{0}+a_{2}>0 \quad \text { and } \quad a_{1}+a_{3}>r a_{2} \tag{6}
\end{equation*}
$$

Proposition 3.3. Let $X=\mathbb{P}\left(\mathscr{O}_{\mathbb{P}^{1}} \oplus \mathscr{O}_{\mathbb{P}^{1}}(r)\right)$ with $r \in \mathbb{N}$. Then:
(1) $-K_{X}$ or $-\left(K_{X}+D_{0}\right)$ are ample if and only if $r \in\{0,1\}$.
(2) If $D \in\left\{D_{1}, D_{3}, D_{0}+D_{1}, D_{0}+D_{3}\right\},-\left(K_{X}+D\right)$ is ample if and only if $r=0$.
(3) If $D \in\left\{D_{2}, D_{2}+D_{1}, D_{2}+D_{3}\right\}$, $-\left(K_{X}+D\right)$ is ample for any $r \in \mathbb{N}$.
(4) If $D \in\left\{D_{0}+D_{2}, D_{1}+D_{3}\right\}$, $-\left(K_{X}+D\right)$ is not ample for any $r \in \mathbb{N}$.

Proof. As $-K_{X}=D_{0}+D_{1}+D_{2}+D_{3}$ and $D_{1} \sim_{\text {lin }} D_{3}, D_{2} \sim_{\text {lin }} D_{0}-r D_{3}$, we get the following linear equivalence of divisors:

$$
\begin{array}{ll}
-K_{X} \sim_{\operatorname{lin}} 2 D_{0}+(2-r) D_{3} & -\left(K_{X}+D_{0}+D_{2}\right) \sim_{\operatorname{lin}} 2 D_{3} \\
-\left(K_{X}+D_{0}\right) \sim_{\operatorname{lin}} D_{0}+(2-r) D_{3} & -\left(K_{X}+D_{0}+D_{3}\right) \sim_{\operatorname{lin}} D_{0}+(1-r) D_{3} \\
-\left(K_{X}+D_{2}\right) \sim_{\operatorname{lin}} D_{0}+2 D_{3} & -\left(K_{X}+D_{2}+D_{3}\right) \sim_{\operatorname{lin}} D_{0}+D_{3} \\
-\left(K_{X}+D_{3}\right) \sim_{\operatorname{lin}} 2 D_{0}+(1-r) D_{3} & -\left(K_{X}+D_{1}+D_{3}\right) \sim_{\operatorname{lin}} 2 D_{0}-r D_{3}
\end{array}
$$

If $a_{1}=a_{2}=0$, the condition (6) becomes $a_{0}>0$ and $a_{3}>0$. This allows us to conclude.

Remark 3.4. Propositions 3.2 and 3.3 give Theorem 1.1.

References

[1] David Cox, John Little, and Hal Schenck, Toric Varieties, Graduate studies in mathematics, American Mathematical Soc., 2011. 2
[2] Takao Fujita, On the structure of polarized varieties with Δ-genera zero, Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics 22 (1975), 103-115. 1
[3] Peter Kleinschmidt, A classification of toric varieties with few generators, Aequationes Mathematicae 35 (1988), 254-266. 4
[4] Hironobu Maeda, Classification of logarithmic Fano threefolds, Compositio Mathematica 57 (1986), no. 1, 81-125. 1
[5] Kenji Matsuki, Introduction to the Mori Program, Universitext, Springer New York, 2002. 1
Univ Brest, UMR CNRS 6205, Laboratoire de Mathématiques de Bretagne Atlantique, France

Email address: achim.napame@univ-brest.fr

