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INTRODUCTION

1.1. FRANCAIS

La notion de stabilité au sens de la pente' a été introduite par Mumford [30] dans sa construction
d’un schéma quasi-projectif décrivant espace de modules des fibrés vectoriels d’un rang donné
sur une courbe complexe. Cette notion de stabilité a été généralisée en dimension supérieure
par Takemoto [36]. On dit qu’un fibré vectoriel, ou plus généralement un faisceau cohérent sans
torsion & sur une variété projective complexe X est stable (resp. semistable) par rapport a une
polarisation L, si pour tout sous-faisceau cohérent propre .# de & tel que 0 < rg(.%#) < rg(&),
ona ur(F) < pr(&) (resp. pr(F) < ur(&)) ou la pente pur (&) de & par rapport a L est
donnée par la formule

c1 ((o@ ) L1

rg(¢)

D’aprés Hartshorne [13], les faisceaux réflexifs peuvent étre vus comme des fibrés vectoriels
légerement singuliers; de plus leur étude permet de mieux comprendre les fibrés vectoriels. De
ce fait, étudier la stabilité des faisceaux réflexifs présente un grand intérét. Compte tenue de la
difficulté qui existe dans ’étude de la stabilité des faisceaux réflexifs, nous nous intéressons au
cas de la catégorie des faisceaux réflexifs équivariants sur les variétés toriques normales en raison
de leurs descriptions combinatoires.

pr(&) =

On rappelle qu'une variété torique de dimension n est une variété irréductible X contenant
un tore T' ~ (C*)"™ comme ouvert de Zariski dense et telle que I’action de 7" sur lui-méme par
multiplication s’étende en une action algébrique sur X (cf. Section 2.1.1). Une variété torique
normale X est une variété qui peut étre décrite a partir d’'un éventail 3 de cones polyédraux
saillants dans N ®7 R ou N est un réseau. On note (1) 'ensemble des cones de dimension 1 de
Y etu, € N I’élément primitif engendrant p € ¥(1). Enfin, un faisceau & sur une variété torique
normale est T-équivariant (ou équivariant) s’il posséde un isomorphisme ® : 0*& — pr5 &
qui satisfait une relation cocyclique (2.14) ou 6 : T' x X — X est Paction de T sur X et
pry : 1" x X — X la projection sur le second facteur.

Klyachko [23] a donné une description compléte des fibrés vectoriels équivariants sur les
variétés toriques en termes de familles de filtrations d’espaces vectoriels. Cette description a
été étendue au cas des faisceaux réflexifs équivariants par Perling [33]. Le fait de supposer le
faisceau équivariant apporte de nombreuses simplifications dans I’étude de sa stabilité. En effet,
si & est un faisceau réflexif équivariant sur une variété torique projective normale X, d’apreés [25,
Proposition 4.13], il est suffisant d’étudier la stabilité en ne considérant que des sous-faisceaux

' La stabilité au sens de la pente est aussi appelée stabilité au sens de Mumford-Takemoto
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réflexifs équivariants saturés. (On dit qu'un sous-faisceau cohérent .# de & est saturé dans & si
le faisceau quotient &/.% est sans-torsion.) De plus, pour toute polarisation L de X, I’ensemble

{pr(ZF) : .7 un sous-faisceau réflexif équivariant et saturé de &'} (1.1)

est fini.

En utilisant le fait que le fibré tangent d’une variété torique normale est équivariant, Hering-
Nill-Siiss [14] et Dasgupta-Dey-Khan [4] ont étudié la stabilité du fibré tangent sur les variétés
toriques projectives lisses de rang de Picard un et deux. En s’inspirant de la philosophie de Iitaka,
nous avons étendu les résultats de [4] et [14] aux cas des paires logarithmiques équivariantes.
D’apreés la Proposition 3.1.3, le faisceau tangent logarithmique Zx (— log D) est un sous-faisceau
équivariant du faisceau tangent Jx si et seulement si D est un diviseur de X invariant par
I’action du tore et réduit. Donc,

D=) D,

pEA
ou A C (1) et D, le diviseur premier et invariant de X déterminé par p € 3(1).
Théoréme 1.1.1 (Theorem 3.1.5). Soit A C X(1) et D = 3 -\ D, un diviseur réduit de X. La

famille de filtrations (E,{E?(j)},ex), jez) du faisceau tangent logarithmique Ix (—log D) est
donnée par :

. 0 sijg < —1 ,
o(7) — =
E’(j) {N@Z(C 5ij>0 sipe A
et
0 sig < =2
E?(j) =< wvect(u,) sij=-—1 sipgd A

N®zC sij>0

Si A = X(1), le faisceau Jx (—log D) est isomorphe au faisceau trivial de rang dim(X)
et si A = &, Ix(—log D) est le faisceau tangent. En utilisant le Théoréme 1.1.1 et le fait que
1X(1)] = dim(X) + rg(Cl(X)), on montre que :

Proposition 1.1.2. Sirg(Cl(X)) + 1 < |A]| < |3(1)] — 1, alors pour toute polarisation L, le
faisceau tangent logarithmique Jx (—log D) est instable par rapport a L.

De ce fait, il suffit d’étudier la stabilité du faisceau tangent logarithmique Jx(—log D)
lorsque |A| < rg(Cl(X)). Dans ce mémoire, nous étudions le cas ou X est une variété pro-
jective torique lisse telle que rg C1(X) € {1,2}. L’espace projective complexe P" est la seule
variété torique lisse de rang de Picard un.

Proposition 1.1.3. Soit D une section hyperplane de P™ invariante par Uaction du tore. Alors, le
faisceau tangent logarithmique Jpn (— log D) est polystable par rapport @ Opn (1).

D’apres [22, Theorem 1], toute variété torique lisse de rang de Picard deux est de la forme
X =P(0Ops & B;_, Ops(a;)) avecr,s € N*etay,...,a, € Ntelsque a; < ... < a,. Notons
7 : X — P?® I'application projection et ¥ le fibré vectoriel associé au faisceau localement libre

ﬁ]ps &P ﬁ]ps(—al) D...PH ﬁps(—ar).
Les diviseurs irréductibles et invariants de X sont donnés par

Dy, =7 '({(z0:...:25) €P*:2;=0}) pour0<j<s
D, = {s;i =0} pour0 <i <r

ou les {s; = 0} sont des sections hyperplanes relatives associées aux sous-fibrés en droites de
¥V.Sia; =...= a, =0, on montre que :
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Theorem 1.1.4 (Theorem 3.3.1). Soiti € {0,...,r}etj € {0,...,s}. Alors:
1. Ix(—log D,,) est polystable par rapport a m* Ops () ® ﬁX( ) si et seulement si § = s+l .
o

r

2. Ix(—log Dyy,) est polystable par rapport a " Ops (o) ® Ox (B) si et seulement si § = 35 ;
3. 7)((— log(Dy,; + Dw;)) est polystable par rapport a 7 Ops (o) @ Ox () si et seulement si

S

ﬁ T
Lorsque a, > 1, on a obtenu la classification suivante des paires (X, D) telles que le faisceau
Ix (—log D) est (semi)stable. Plus précisément, on donne les valeurs de v pour lesquelles & =
TIx (—log D) est (semi)stable par rapport a 7*Ops () ® Ox (1) dans les tableaux 3.2, 3.3, 3.4 et
leurs références.

Theorem 1.1.5 (Theorem 3.3.5). Soit X = P(Ops ® Ops(a1)®. .. B Ops(ay)) avec (ay, ..., a,) #
(0,...,0) et D un diviseur réduit et invariant de X . Alors :
1. Il existe une polarisation L telle que Tx (—log D) est stable par rapport a L si et seulement
Si:
i (a1,...,a,)=1(0,...,0,1) et D =D, ou

ii. ap =...=a, vérifie(r — 1)a, < (s +1) et D = D,,.
2. 1l existe une polarisation L telle que Tx (—log D) est polystable par rapport a L si et seule-
ment si :
i ap=...=a, vérifie(r — 1)a, < s et

D €{Dyy+ Dy; : 0<j < s} U{Dy, + Dy, : 1 <0 <1y

ii.oul < ayp <ay =...=a, et D = Dy, + D, avec{(s) > 0 ou lapplication
¢ : N* — R est définie par

3. Dans les autres cas, le faisceau Tx (—log D) est instable par rapport a toute polarisation.

Dans l’article [27], Maeda a classifié les surfaces log del Pezzo et les variétés log-Fano de
dimension 3. Dans la Proposition 3.4.4, nous donnons une preuve combinatoire de ce résultat
pour les surfaces toriques. En utilisant la Proposition 3.4.4 et le Théoréme 1.2.5, nous obtenons :

Proposition 1.1.6. Soitr € N et X = P (Op1 © Opi(r)) munie de la projection 7w : X — PL.
Soit D', Dy, Do des diviseurs invariants tels que :

« D' est une fibre de 7 ;

« Dyg et Dy sont des sections vérifiant Dy - Dy =1 et Dy - Dy = —
Alors,

1 sir=0etD € {D' Dy, Dy, Do+ D', Dy + D'}, Tx(—log D) est polystable par rapport

i —(Kx + D);
2. sir =1, Ix(—log Dy) est stable par rapport @ —(Kx + Dy).
3. sir>1etD € {Ds, Dy + D'}, Tx(—log D) est instable par rapport a —(Kx + D).

A partir de faisceaux stables, une question naturelle est de savoir comment se comporte la
stabilité a travers certaines opérations comme les pullbacks. Dans le cas des immersions, le théo-
réme de Mehta et Ramanathan nous dit :

Théoréme 1.1.7 ([28, Theorem 4.3]). Soit X une variété projective lisse de dimensionn, H une po-
larisation et Vi) = D1 N...N D; une sous-variété obtenue comme intersection compléte générique
d’éléments D; € |kH| pour k suffisamment grand. Si & est un faisceau cohérent sans torsion semis-
table (resp. stable) par rapport a H, alors il existe kg € N*, tel que pour tout k > ko, la restriction
<§’|V<k) est semistable (resp. stable) par rapport a H|V<k)
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Dans ce mémoire, nous étudions le probleme des pullbacks de faisceaux réflexifs semistables
a travers des fibrations dans le cas équivariant de la géométrie torique. Un application propre
7w : X' — X est une fibration si m,Ox: = Ox. Soit 7 : X’ — X une fibration entre deux
variétés toriques projectives Q-factorielles et & un faisceau réflexif équivariant sur X. On note
&' = (1*&)VY l'enveloppe réflexive de 7*& et pour .# C & un sous-faisceau, on note (7*.7 )t
la saturation de (7*.%)V" dans &”, c’est le noyau de la surjection

E — &' (T T\ — (&) (7 F)VY) ) Tor(&' ) (7* F)VY)

(cf. [16, Definition 1.1.5]). Soit L un diviseur ample sur X et L’ un diviseur m-ample. Pour ¢ €
Q>0 suffisamment petit, L. = 7*L + ¢L’ définit un Q-diviseur ample sur X’. En suivant la
terminologie utilisée en géométrie différentielle, le Q-diviseur ample L. est appelé polarisation
adiabatique. La pente de &’ (resp. (7*.%)%") par rapport a L. est un polynome en ¢ tel que le
coefficient du plus petit exposant du développement en ¢ est donné par ur (&) (resp. ur(F)).
A Taide de (1.1) il est facile de montrer : si & est stable (resp. instable) par rapport a L, alors il
existe £g € Qx tel que pour tout € €]0, £9[NQ, & est stable (resp. instable) par rapport a L..

Le résultat principal sur les pullbacks de faisceaux le long des fibrations que nous montrons
concerne le cas strictement semistable. Pour deux faisceaux cohérents .%#; et %5 sur X’ on écrit
po(F1) < po(F2) (resp. po(F1) < po(F2) ou bien po(F1) = po(F2)) si le coefficient du
plus petit exposant du développement en € de pu_(:%2) — pur. (:#1) est strictement positif (resp.
positif ou nul ou bien nul). Si & est un faisceau cohérent sans torsion strictement semistable par
rapport a L sur X, il existe une filtration de Jordan-Holder

0= C&HC..CE=E

par des sous-faisceaux cohérents semistables avec des quotients stables et de méme pente que
&.Onnote Grp(&) := @f;ll &i+1/6; le gradué de & et € I'ensemble des sous-faisceaux saturés
F C & provenant de la filtration de Jordan-Holder de &'.

Théoréme 1.1.8 (Theorem 4.1.9). Soit & un faisceau équivariant localement libre et strictement
semistable sur la variété polarisée (X, L) tel que son objet gradué soit localement libre. Alors il existe
g0 € Qs tel que pour tout e €]0,e0[NQ, le faisceau &' sur X' est
1. stable par rapport a L. si et seulement si pour tout F € €, puo((7*F)VV) < puo(&’),
2. strictement semistable par rapport a L. si et seulement si pour tout F € €, po((7*.F)VV) <
pio(&7),
3. instable par rapport a L si et seulement s’il existe & € € avec puo((7*F)VY) > po(&”).

Remarque 1.1.9. Dans le cas o 7 : X’ — X est une fibration torique localement triviale, on
montre que les hypothéses sur & et Grz, (&) d’étre localement libres ne sont pas nécessaires.

Un autre exemple de fibration qui est étudié est celui des éclatements. Soit X une variété
projective lisse et Z une sous-variété irréductible lisse de dimension  telle que ¢ < dim(X) — 2.
On note 7 : X' — X D’éclatement de X le long de Z et Dy son diviseur exceptionnel. Pour
L une polarisation sur X et e € Qs petit, on considére la polarisation L. sur X’ définie par
L. =7*L —¢eDy.

Proposition 1.1.10. Soit Z un ensemble de points invariants d’une variété torique X etm : X' —
X Péclatement de X le long de Z. Soit & un faisceau réflexif équivariant et strictement semistable
sur la variété polarisée (X, L). Alors, il existe eg € Q¢ tel que pour tout e €]0, ], le faisceau
E = (m*&)VY est
1. semistable par rapport a L. si et seulement si pour tout F € €, (1*.F)
2. instable dans 'autre cas.

YV est saturé dans &' ;
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Le résultat [9, Proposition 5.1] est plus général que la proposition ci-dessus puisqu’il consi-
deére le cas des faisceaux cohérents sans-torsion sur une variété projective normale (non néces-
sairement torique). En revanche, la Proposition 1.1.10 donne plus d’informations lorsque Gry, (&)
n’est pas localement libre. Si I'on suppose ¢ > 1, pour tout faisceau réflexif & sur une variété
projective lisse X, on montre que

n—1

e () = el - (|

—L —0+1
Jis (6 0. 12)
En particulier, si X est une variété torique, Z une sous variété invariante de X et & un faisceau
équivariant strictement semistable par rapport a L tel que pour tout .# € €, (7*.%)"V est saturé
dans & = (7*&)VV et
e, (Ez) < pr,(Fz)

alors il existe 9 € Q= tel que pour tout £ €]0,£9[NQ, & est stable par rapport & L.. Dans le
cas ou £ = 1, nous avons :

Théoréme 1.1.11 (Theorem 4.2.10). Soit X une variété torique projective lisse et m : X' — X
Péclatement de X le long d’une courbe invariante Z. Si & est un faisceau réflexif équivariant sur X
et strictement semistable par rapport a L, alors il existe g € Qx, tel que pour tout € €]0, e9[NQ,
le faisceau &' = (7*&)VV est :
1. stable par rapport a L. si et seulement si pour tout F € €, (7*.F)VV est saturé dans &' et
a(é)-Z cl(ﬂ)-Z'
rk & rk #
2. semistable par rapport a L. si et seulement si pour tout & € €, (7*.F)
et61(£) -Z < Cl(gi) : Z;
rk & rk #
3. instable dans les autres cas.

YV est saturé dans &'

Remark 1.1.12. Gréace a ce théoréme, nous donnons dans la Section 4.2.5 un exemple explicite
de faisceau strictement semistable, a savoir le faisceau tangent de P(05)" & Op:1 (1)), qui devient
stable ou instable lorsqu’on considére son pullback le long de ’éclatement d’une courbe.

Ces résultats sur la stabilité par passage aux éclatements ont une application a la résolution
de singularités des faisceaux. Le théoréme d’Hironaka [15, Main Theorem II] nous dit : Pour
un faisceau réflexif &y := & sur une variété projective lisse Xy := X, il existe une suite finie
d’éclatements le long de centres invariants 7; : X; — X;_1 pour 1 < ¢ < p telle que : si l'on
pose &; = (7} 1)V, alors & := &), est localement libre sur X’ := X,,. Onnote 7 : X, — X
I'application entre X, et X et .S := X (& )sing le lieu singulier de & sur X.

Corollaire 1.1.13. Soit & un faisceau équivariant stable sur la variété torique polarisée (X, L),
alors il existe £g € Qs tel que pour tout ¢ €]0,£0[NQ, &' est stable par rapport a 7* L — £ E oul
E=1"49).

Le nombre p donné ci-dessus n’est pas explicite. Une question naturelle serait donc de trouver
une borne explicite sur p. Dans ce mémoire, nous décrivons le lieu singulier des faisceaux réflexifs
équivariants. Généralement, si & est un faisceau réflexif sur une variété projective complexe X,
son lieu singulier X (& )sing est un sous-ensemble fermé dans X pour la topologie de Zariski et
de codimension au moins 3. Dans le cas ou X est torique et & équivariant, il est facile de montrer
que X (&)sing est une union fini de fermeture d’orbites de X. Plus précisement, si 3 est I'éventail
de X, il existe 7q,...,7, € X tels que dim(7;) > 3 et
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ou V(7;) est la fermeture de 'orbite associée au cone 7;. On montre ensuite qu’il est possible de
prescrire des singularités sur un faisceau.

Théoréme 1.1.14 (Theorem 5.1.6). Soit X une variété torique lisse d’éventail 3. Soit Ty, ..., T, €
¥ vérifiant dim(7;) > 3 et tels que pour tout i # j, T; n’est pas une face propre de 7. Alors, il existe
un faisceau réflexif équivariant & de rang >, dim(7;) — m sur X tel que

X(8)sing = | J V(7).
=1

La construction du faisceau & est explicite et s’obtient comme généralisation de I'exemple
d’Hartshorne [13, Example 1.9.1].

Plan du document. Le manuscrit est construit de la facon suivante :

« Dans le Chapitre 2, on rappelle les notions de base sur les variétés toriques, les faisceaux
équivariants et aussi les notions sur la stabilité. Ce chapitre s’appuie sur [2], [33] et [36].

« Dans le Chapitre 3 nous étudions la stabilité des faisceaux tangents logarithmiques équi-
variants. Nous montrons les Théoremes 1.1.1, 1.1.4, 1.1.5 et les Propositions 1.1.2, 1.1.3. Les
résultat de ce chapitre ont donné lieu a I’article [Nap21].

+ Le Chapitre 4 présente les notions de stabilité des pullbacks de faisceaux le long des fi-
brations. Dans ce chapitre, nous montrons les Théorémes 1.1.8 et 1.1.11. Nous démontrons
également la formule (1.2). Ces résultats sont basés sur 'article [NT22].

« Enfin dans le Chapitre 5, on étudie le lieu singulier des faisceaux réflexifs équivariants sur
les variétés toriques. Nous montrons le Théoréme 1.1.14.

1.2. ENGLISH

The notion of slope stability” was first introduced by Mumford [30] in his construction of moduli
spaces of vector bundles over a curve. This notion was generalized in higher dimension by
Takemoto [36]. A vector bundle, or more generally a torsion-free sheaf & on a complex projective
variety X is said to be slope stable (resp. semistable) with respect to a polarization L, if for any
proper coherent subsheaf .% of & with 0 < rk(.%#) < rk(&’), one has pr (%) < pr(&) (resp.
pwr(F) < pp(&)) where the slope j11, (&) of & with respect to L is given by

c1 (@"fd) A

According to Hartshorne [13], reflexive sheaves can be seen as vector bundles with singularities
and their study gives a better description of vector bundles. This gives us a reason to study
reflexive sheaves. As the study of stability is a difficult problem, we are interested in the category
of torus equivariant reflexive sheaves over normal toric varieties according to their combinatorial
data.

We recall that an n-dimensional toric variety is an irreducible variety X containing a torus
T ~ (C*)™ as a Zariski open subset such that the action of 7" on itself by multiplication extends
to an algebraic action of 7" on X (cf. Section 2.1.1). According to [2, Corollary 3.1.8], a normal
toric variety X comes from a fan ¥ of strongly convex polyhedral cones in Ng = N ®7 R where
N is a lattice. We denote by (1) the set of one dimensional cones of ¥ and by u, € N the

? Slope stability is also called Mumford-Takemoto—stability
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minimal generator of p € ¥(1). We say that a reflexive sheaf & on a normal toric variety X is
T-equivariant (or equivariant for short) if it is equipped with an isomorphism ® : §*& — pr3 &
which satisfies some cocyle condition (2.14) where 6 : T'x X — X is the action of 7" on X and
pry : T' x X — X the projection onto the second factor.

Klyachko [23] gave a description of torus equivariant vector bundles over toric varieties in
terms of families of filtrations of vector spaces. This classification was extended to the case of
torsion-free equivariant coherent sheaves by Perling [33]. The equivariant structure on a sheaf
gives a lot of simplifications in the study of its stability. If & is an equivariant reflexive sheaf on
a normal projective toric variety X, according to [25, Proposition 4.13], it is enough to test slope
inequalities for equivariant and reflexive saturated subsheaves. (A coherent subsheaf .# of & is
saturated if the quotient sheaf & /.7 is torsion-free.) Moreover, for any polarization L on X, the
set

{pr(F) : .7 is an equivariant reflexive and saturated subsheaf of &'} (1.3)

is finite.

By using the equivariant structure of the tangent bundle, Dasgupta-Dey-Khan in [4] and
Hering-Nill-Siiss in [14] studied slope-stability of the tangent bundle of smooth projective toric
varieties of Picard rank one or two. Inspired by litaka’s philosophy, we extend the results of
[4] and [14] to the case of equivariant log pairs (X, D). By Proposition 3.1.3, the logarithmic
tangent sheaf Jx(—log D) is an equivariant subsheaf of the tangent sheaf if and only if the
reduced divisor D is torus invariant. Hence,

D=) D,

pEA

where A C 3(1) and D, is a prime and torus invariant divisor of X corresponding to the ray
p e X(1).

Theorem 1.2.1 (Theorem 3.1.5). Let A C X(1) and D = }_ . A D) be a reduced divisor of X.
The family of filtrations (E,{E"(j)}ex1), jez) of the logarithmic tangent sheaf Ix (—log D) is
given by

4 0 ifj < -1 .
14 —
and by
0 ifj < -2
EP(j) = q Span(uy) ifj=—-1 ifp ¢ AL

N®zC ifj>0

If A = 3(1), then Ix (— log D) is isomorphic to the trivial sheaf of rank n and if A = @, then
Ix (—log D) is the tangent sheaf .7x. By Theorem 1.2.1 and the fact that |(1)| = dim(X) +
rk(Cl(X)), we show that:

Proposition 1.2.2. If1 + rk(Cl(X)) < |A] < |X(1)| — 1, then for any polarization L, the
logarithmic tangent sheaf x (— log D) is unstable with respect to L.

According to this proposition, it is therefore sufficient to study the stability of Ty (— log D)
when |A| < rk(CI(X)). Thus, in this thesis we study the case where X is smooth, rk C1(X) €
{1,2} and 1 < |A| < rk CI(X). Note that the only smooth projective toric variety with Picard
number one is the projective space P".

Proposition 1.2.3. Let D be an invariant hyperplane section of P". Then, the logarithmic tangent
sheaf Fpn (— log D) is polystable with respect to Opn (1).
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By [22, Theorem 1], every smooth toric variety of Picard rank two is of the form X = P(Ops ®
D;_, Ops(a;)) with r,s € N* and a1,...,a, € Nsuch thata; < ... < a,. We denote by
7 : X — P? the projection map. Let ¥ be a vector bundle associated to the locally free sheaf

ﬁps (&) ﬁps(—al) D...D ﬁps(—ar).
Then the irreducible invariant divisors of X are given by

Dy, =7 {(z0:...:25) €P¥:2;=0}) for0<j<s
D,, = {s;i =0} for0<:i<r

where the {s; = 0} are the relative hyperplane sections associated to the line subbundles of 7¥"V.
Ifa; = ... = a, = 0, we show that:

Theorem 1.2.4 (Theorem 3.3.1). Leti € {0,...,7} andj € {0,...,s}. Then:
1. Ix(—log Dy,) is polystable with respect to 7" Ops (o) ® Ox (B) if and only if § = s,
2. Ix(—log Du,) is polystable with respect to m* Ops () @ Ox (B) if and only if § = 55
3. Ix (= log(Du,+Du,)) is polystable with respect tow* Ops () @ Ox (B) if and only if 5 = 7.

T

When a, > 1, we get the following classification on pairs (X, D) such that Jx(—log D) is

(semi)stable. More precisely, we give the values of v for which & = x(—log D) is (semi)stable
with respect to 7*0ps (V) ® Ox (1) in the Tables 3.2, 3.3, 3.4 and the references therein.

Theorem 1.2.5 (Theorem 3.3.5). Let X = P(Ops ® Ops(a1)D...® Ops(a,)) with (ay,...,a,) #
(0,...,0) and D a reduced invariant divisor of X. Then:
1. There is a polarization L such that Tx (—log D) is stable with respect to L if and only if:
i (a1,...,a,)=(0,...,0,1)and D = D,,, or
ii. ap =...=a, with(r —1)a, < (s+1) and D = D,,.
2. There is a polarization L such that Ix (—log D) is polystable with respect to L if and only
if

i ay=...=a, with(r —1)a, < s and
D €{Dyy+ Dy; : 0<j < s} U{Dy, + Dy, : 1 <0 <1y

ii. orl <ay <ag=...=a, and D = Dy, + D,, with{(s) > 0 wherel : N* — R is
the map given by

=5 (7 (1) ()

J

3. Otherwise, the sheaf Tx (— log D) is unstable with respect to any polarization.

Maeda classified log del Pezzo surfaces and log-Fano threefolds in [27]. We give a combina-
torial proof of this result for toric surfaces in Proposition 3.4.4. By using Proposition 3.4.4 and
Theorem 1.2.5, we get:

Proposition 1.2.6. Letr € N and X = P (Op1 ® Op1 (1)) with the projection mapw : X — PL.
Let D', Dy, Do be invariant divisors such that:
« D' is a fiber of T;
o Dy and D are sections such that Dy - Dy = r and Dy - Dy = —r.
Then,
1 ifr =0and D € {D’, Dy, D2, Do+ D', Dy + D'}, Ix(—log D) is polystable with respect
to—(Kx + D);
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2. ifr =1, Ix(—log Dy) is stable with respect to —(K x + Dy).
3. ifr >1and D € {Dy, Dy + D'}, Ix(—log D) is unstable with respect —(Kx + D).

Given stable sheaves, a natural question is to understand how they behave with respect to
natural maps such as pullbacks. In the case of immersions, the Metha-Ramanathan theorem says:

Theorem 1.2.7 ([28, Theorem 4.3]). Let X be an n-dimensional smooth projective variety, H a
polarization and Vi) = D1 N ... N D; a subvariety obtained as a generic complete intersection of
elements D; € |kH|. If & is a semistable (resp. stable) torsion-free sheaf with respect to H, then
there is kg € N* such that: for any k > ko, the restriction of@("‘v(k) is semistable (resp. stable) with
respect to H|V<k).

In this thesis, we address the problem of pulling-back (semi)stable reflexive sheaves along
fibrations, in the equivariant context of toric geometry. A proper morphism 7 : X' — X is
a fibration if m,0x: = Ox. Let m : X’ — X be a fibration between Q-factorial projective
toric varieties and & an equivariant reflexive sheaf on X. We denote by &” its reflexive pullback

(7*&)VY and for a subsheaf .# C &, we denote by (7*.% )% the saturation of (7*.% )"V in &”,
it is the kernel of the surjection

& — & |(x* F) — (&)« F)") | Tor(&' | (" F)")

(cf. [16, Definition 1.1.5]). Let L be an ample divisor on X and L’ a relatively ample divisor on
X'. Fore € Q¢ small enough, L. = 7*L+¢L’ defines an ample Q-divisor on X’. Following the
terminology used in differential geometry, we will call the associated Q-polarization L. adiabatic.
The slope of & (resp. (7*.%)5") with respect to L. admits an expansion in €, with the coefficient
of the smallest exponent given by p11,(&) (vesp. pr(-%)). It is straightforward to show that: if &
is stable (resp. unstable) with respect to L, then there is g € Q¢ such that for all € €]0,0[NQ,
& is stable (resp. unstable) with respect to L.

The main result of this thesis on fibrations is about the strictly semistable situation. For two
coherent sheaves %1 and % on X', we write puo(-71) < po(F2) (resp. po(F1) < po(Fa2)
or puo(Z1) = po(-%2)) when the coefficient of the smallest exponent in the expansion in € of
pr. (F2) — pr.(F1) is strictly positive (resp. greater or equal to zero or equal to zero). If & is a
strictly semistable torsion-free sheaf on (X, L), there is a Jordan-Hoélder filtration

0=6C&EHC...CE=E

by slope semistable coherent subsheaves with stable quotients of same slope as &. We denote
by Grp(&) := @f:i &;+1/&; the graded object of & and € the set of equivariant and saturated
subsheaves .# C & arising in a Jordan-Holder filtration of &.

Theorem 1.2.8 (Theorem 4.1.9). Let & be an equivariant locally free and strictly semistable sheaf
on (X, L) such that its graded object is also locally free. Then there is ¢y € Q¢ such that for all
e €]0,e0[NQ, the reflexive pullback &' = (7*&)VY on (X', L;) is:

1. stable iff for all F € €, po((7* F)VV) < puo(&),

2. strictly semistable iff for all F € €, uo((7* F)VV) < po(&'),

3. unstable iff there is one F € € with po((7* F)VV) > po(&”).

Remark 1.2.9. In the case where 7 is a locally trivial toric fibration, then the assumptions on &
or Grz (&) to be locally free in this theorem are not necessary.

Another case of interest is when the fibration is a blowup. Let X be a smooth projective
variety and Z an irreducible subvariety of dimension £ with £ < dim(X) — 2. Let 7 : X' — X
be the blowup of X along Z and Dy be its exceptional divisor. For a polarization L on X and
e € Q-¢ small enough, we consider the polarization L. on X’ defined by L. = L — eD.
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Proposition 1.2.10. Let Z be a set of invariant points of a smooth toric variety X andw : X' —
X the blowup along Z. Let & be an equivariant reflexive sheaf that is strictly semistable on (X, L).
Then there is g > 0 such that for all ¢ €]0,20[NQ, the reflexive pullback & := (7*&)VY on
(X', L) is:

1. strictly semistable iff for any subsheaf F € €, (n*.F)VV is saturated in &',

2. unstable otherwise.

The result of [9, Proposition 5.1] is more general as it deals with pullbacks of semistable
torsion-free sheaves over normal projective varieties, but Proposition 1.2.10 seems to provide
more information when Gr, (&) is not locally free. If we assume ¢ > 1, for any reflexive sheaf
& on a smooth projective variety X, we show that

n—1

e ()™ = () - (|

Jis (i 0. 19
In particular, if X is a smooth toric variety, Z an invariant subvariety of X and & an equivariant
strictly semistable sheaf on (X, L) such that for all # € €&, (7*.%)""V is saturated in &’ :=
(7*&)VY and

1Ly, (8z) < pr,(F z),

then there is 9 > 0 such that for all € €]0, £9[NQ, the pullback &” is stable on (X', L.). In the
case where ¢ = 1, we have the following result.

Theorem 1.2.11 (Theorem 4.2.10). Let (X, L) be a smooth polarised toric variety. Let 7w : X' —
X be the blowup along a T'-invariant irreducible curve Z C X. If & is an equivariant reflexive
sheaf that is strictly semistable on (X, L), then there is £g > 0 such that for all € €]0,e9[NQ, the
pullback & on (X', L;) is

.7 ZY. 7
1. stable iff for all Z € €, (7*.F)VV is saturated in &' and c1(¢) < c(F)-Z.

rk & 2. 7 rk 7 ' P
. T .
2. semistable iff for all F € €, (7*.F)VV is saturated in &' and Cl(klﬁ < al L)? ;
r r

3. unstable otherwise.

Remark 1.2.12. As an application of this theorem, in Section 4.2.5 we give an explicit example of
strictly semistable sheaf, namely the tangent sheaf of P (@’fﬁr @ Op (1)) that becomes stable or
unstable when pulled back to the blowup along a curve.

These results on stability of pullbacks of sheaves along blowups have an application on res-
olution of singularities. An application of Hironaka’s resolution of indeterminacy locus shows
that for a given equivariant reflexive sheaf &y := & on Xy := X, there is a finite sequence of
blowups along smooth irreducible torus invariant centers m; : X; — X;_1 for 1 <4 < p such
that: if we set & = (] 7—1)"V, the sheaf &' := &y, is locally free on X’ := X,,. We denote by
7 : X;, — X the map between X, and X and S := X (& )sing the singular locus of & on X.

Corollary 1.2.13. Let & be an equivariant stable sheaf on the polarized toric variety (X, L), there
iseg € Qs such that foralle €]0,e0[NQ, & is stable with respect tom* L—c E where E = 7~ 1(S).

The number p given above is not explicit. A natural question would be to find an explicit
bound on p. In this thesis we describe the singular locus of equivariant reflexive sheaves. From
general theory, if X is a smooth complex variety and & a reflexive sheaf over X, its singular
locus X (& )sing is a Zariski closed subset of X of codimension at least 3. In the toric situation,
that is if X is toric and & is an equivariant sheaf, it is not hard to see that X (& )sing is a finite
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union of torus orbit closures. More precisely, if > denotes the fan of X, thereare 7y, ..., 7. € %,
with dim(7;) > 3, such that

X(&)sing = U V(7i),
i=1

where V (7;) denotes the closure of the orbit associated to 7;. We then show that it is possible to
prescribe singularities on a sheaf.

Theorem 1.2.14 (Theorem 5.1.6). Let X be a smooth toric variety with fan 3. Let 1, ..., Ty € X
with dim(7;) > 3 such that for any i,j € {1,...,m} withi # j, 7; is not a proper face of T;.
Then, there exists an equivariant reflexive sheaf & on X of rank ;" | dim(7;) — m such that

X(6)sing = U V(%)

Our construction is explicit, and is obtained as a simple generalisation of Hartshorne’s ex-
ample [13, Example 1.9.1].

Organization. The thesis is organized as follows:

« In Chapter 2, we recall the background on toric varieties, equivariant sheaves and stability.
The main references of this chapter are [2], [33] and [36].

« In Chapter 3, we study stability of equivariant logarithmic tangent sheaves. We give the
proofs of Theorems 1.2.1, 1.2.4, 1.2.5 and also the proofs of Propositions 1.2.2 and 1.2.3. The
results of this chapter gave rise to paper [Nap21].

+ In Chapter 4 we study the stability of pullback sheaves along fibrations. We prove Theo-
rems 1.2.8 and 1.2.11. We also give the proof of Formula (1.4). The results of this chapter
come from [NT22].

+ Finally in Chapter 5 we study the singular locus of equivariant reflexive sheaves. We prove
Theorem 1.2.14.

1.3. NOTATIONS

We give here some notations that are used in the document. An ideal I C C[zy,...,x,] gives
an affine variety

V(I)={peC": f(p)=0forall f eI}

and an affine variety V' C C" gives the ideal
I(V)={feClxi,...,zn]: f(p) =0forallp € V}.
Let R be aring and f € R a nonzero element. We denote by
Spm(R)

the maximal spectrum of R and by 12y the localization of R at f.






TORIC VARIETIES AND COHERENT SHEAVES

In this chapter, we present different notions that will be discussed in this manuscript:
toric varieties, equivariant sheaves and stability of sheaves.

2.1. TORIC VARIETIES

In this first section we gather the necessary background about toric varieties [2, Chapter 1, 2, 3].

Definition 2.1.1. A toric variety is an irreducible variety X containing a torus 7' ~ (C*)" as a
Zariski open subset such that the action of 7" on itself by multiplication extends to an algebraic
action of 7" on X.

Example 2.1.2. The curve C = V(23 — y?) C C? is an affine toric variety with torus C'\ {0} =
{(#%,#3) : t € C*}. As C[C] is not normal, the variety C is not normal. O

2.1.1. Normal toric varieties. We describe here normal toric varieties. Let N be a rank n
lattice and M = Homy(N, Z) be its dual lattice with pairing (-,-) : M x N — Z. Then N is
the lattice of one-parameter subgroups of the n-dimensional complex torus T := N ®z C* =
Homy (M, C*). Note that M is the character lattice of Ty .

Notation 2.1.3. For K = R or C, we define Nx = N ®z K and Mg = M ®z K. We denote
by x™ : Ty —> C* the character corresponding to m € M and by \* : C* — Ty the
one-parameter subgroup corresponding to u € N.

A strongly convex polyhedral cone o in Ny is a set of the form

o = Cone(S) = {Z)\uu Ay > 0}

u€es

where S C Np is finite and such that o N (—o) = {0}. Moreover, if S C N, then o is called
rational. The dual cone of ¢ is defined by

0" ={m e Mg : (m,u) >0forallu € o}
and a face of o is given by {u € Ng : (m,u) = 0} N o for some m € ¢".

Definition 2.1.4. A fan ¥ in Np is a non-empty set of rational strongly convex polyhedral cones
in Ng such that:

19
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U ® U2

Uy U1

(a) Fan of P? (b) Fan of P! x P!

Figure 2.1: Example of fans in R?

« Fach face of a cone in ¥ is also a cone in X ;
« The intersection of two cones in X is a face of each.
Furthermore, if ¥ is a fan, then the support of ¥ is |X| = |, 5, 0.

Notation 2.1.5. Let X be a fan. We denote by 3(r) the set of -dimensional cones of . Elements
of ¥(1) will be called rays. For two cones 7,0 € ¥, we write 7 < ¢ if 7 is a face of ¢ and for
p € ¥(1), we denote by u, € N its minimal generator.

For o € ¥, the lattice of points S, = ¢ N M is a finitely generated monoid. By [2, Theorem
1.2.18], the variety U, = Spm(CJ[S,]) is an affine toric variety with torus 7. We denote by
Xy, the variety obtained by gluing the affine charts (U, ),ex where U, N U, = Uynr for any
0,0’ € X. By [2, Theorem 3.1.5], the variety Xy, is a normal toric variety with torus 7. In
general, every normal toric variety comes from a fan. This is a consequence of a theorem of
Sumibhiro.

Theorem 2.1.6 ([35, Theorem 1]). Let the torus I act on a normal variety X. Then every point
p € X has aT-invariant affine open neighborhood.

Corollary 2.1.7 ([2, Corollary 3.1.8]). Let X be a normal toric variety with torus T and N the
lattice of one-parameter subgroups of I'. Then, there exists a unique fan ¥ in Ng such that X ~ Xs,.

From now on, a normal toric variety will be defined by a fan. As we will only consider normal
toric varieties, toric varieties will mean normal toric varieties.

Remark 2.1.8. If ¥ is a fan in (N7 )g and X9 a fan in (N3 )R, then the toric variety corresponding
to the fan X1 X Yo = {0'1 X 09 :0; € (NZ)R} in (N1 X NQ)]R is Xgl X XEQ.

Example 2.1.9. We assume that N = Z. The only strongly convex cones in Nr are og =
[0; +00[, 01 =] — 00; 0] and 7 = {0}. The toric variety corresponding to

« {T}is C*;

« {r,00}or {1,01}is C;

« {7,00,01} is PL.
This is the list of all 1-dimensional toric varieties viewed as abstract varieties. O

Example 2.1.10. Let (ug,us) be the standard basis of Z? and %1, ¥ be two fans in R? such
that:

¥1(2) = {Cone(ui, u2), Cone(ug, —(ui + u2)), Cone(—(u1 + uz),u1)},
¥9(2) = {Cone(uy, uz), Cone(ug, —uq ), Cone(—uy, —usz), Cone(—ua, u)}.

Figures 2.1a and 2.1b represent fans 3; and > respectively. As the affine toric variety corre-
sponding to the cone Cone(u1,uz) is C? (as an abstract variety), by gluing the affine charts, we
get Xy, = P? and Xy, = P! x PL. O
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Notation 2.1.11. Let X be a fan in Ng. For o € ¥, we set:
co(l)=X)n{reX: 720}
« N, = Span(o) N N and N (o) = N/N,.
« M(o)={meM: (m,u) =0forallu € o} and M, = M/M(o).
* Tn(s) = Homgz(M (o), C*) and we denote by . the point of U, such that the torus-orbit
O(0) = TN - 7 is isomorphic to the torus Ty ().
The point v, € U, is called the distinguished point of .

Theorem 2.1.12 (Orbit-Cone Correspondence, [2, Theorem 3.2.6]). Let X be the toric variety
associated to a fan > with torus T'. Then
1. There is a bijective correspondence

{Conesco in¥} <«+— {T-orbitsin X}
o «— O(o)

with dim O(c) = dim Ng — dim 0.
2. The affine open subset U, is the union of orbits

U, = | J O(r)

70

3. 7 X oifand only if O(c) C O(7), and

where O(T) denotes the closure in both the classical and Zariski topologies.

For any 7 € ¥, we set V(1) = O(7). We have an exact sequence
0— N, — N — N(1) — 0.

For each cone o € ¥ containing 7, let & be the image cone in N(7)g under the quotient map
Nr — N(7)r. Then
Star(r7) ={d C N(T)gr: 7 20 € ¥}

is a fan in N(7)g.

Proposition 2.1.13 ([2, Proposition 3.2.7]). For any T € %, the orbit closure V (7) is isomorphic
to the toric variety Xggar(r)-

If p € ¥(1), we denote V(p) by D,. For any p € 3(1), D, defines an irreducible T-invariant
Weil divisor of Xy. Divisors of the form ) pexy(1) GpDp are precisely the invariant divisors under
the torus action on Xs,. Thus,

WDivy(Xy) @ ZD,
peX(1

is the group of invariant Weil divisors on Xy,. We denote by
« WDiv(Xy,) the set of Weil divisors on Xs; ;
« Div(Xy) the set of Cartier divisors on Xy ;
« Divg(Xy) the set of principal divisors on Xy ;
« Divyp(Xy) the set of invariant Cartier divisors on X,.
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All these sets are in fact additive groups. A particular divisor associated to a variety is its canon-
ical divisor.

Theorem 2.1.14 ([2, Theorem 8.2.3]). The canonical divisor of a toric variety Xy, is the torus

invariant Weil divisor
Kxy=— Y D,
peX(1)

Two divisors D and D’ are linearly equivalent on Xy, written D ~y, D', if D — D’ €
Divy(Xs;). For Weil and Cartier divisors, linear equivalence classes form the following important
groups.

Definition 2.1.15. The class group of Xy is defined by Cl(Xyx) = WDiv(Xy)/ Divg(Xs) and
its Picard group is Pic(Xx) = Div(Xy)/ Divg(Xy).

By [2, Proposition 4.1.2], for m € M, the character x™ is a rational function on Xy, and its
divisor is given by
div(x™) = Y (m,u,)D,, (2.1)
peEX(1)

so div(x"") defines an invariant principal divisor of Xy,.

Definition 2.1.16. Let X, X5 be normal toric varieties. A morphism 7 : X7 — Xa is toricif w
maps the torus 77 of X7 into the torus 75 of X5 and Ty - Ty — T5 is a group homomorphism.
We say that 7 is an equivariant mapping for the 77- and T5-actions if for any ¢t € T,z € X,
w(t-x)=n(t) w(x).

A normal toric variety X has a torus factor if it is equivariantly isomorphic to the product
of a nontrivial torus and a toric variety of smaller dimension. By [2, Proposition 3.3.9], Xy, has a
torus factor if and only if the set {u, : p € ¥(1)} does not span Ng. If Xy, has no torus factor,
then by [2, Theorem 4.1.3 and 4.2.1] we have the exact sequences

0 — M — WDivyp(Xy) — Cl(Xy) — 0 (2.2)

and
0 — M — Divy(Xy) — Pic(Xy) — 0. (2.3)

Therefore,
Corollary 2.1.17. If X5, has no torus factor, then |%(1)| = dim(Xy) + rk C1(X).

Let o be a cone in Ng. We say that ¢ is smooth if its minimal generators form a part of a
Z-basis of N and we say that o is simplicial if its minimal generators are linearly independent
over R. A fan ¥ is smooth (resp. simplicial) if every cone ¢ in ¥ is smooth (resp. simplicial).
Finally, we say that ¥ is complete if |X| = Ng.

Theorem 2.1.18 ([2, Theorem 3.1.19]). Let X, be the toric variety defined by the fan 3. Then :
1. Xy, is a smooth variety if and only if the fan ¥ is smooth.
2. Xy is Q-factorial if and only if the fan ¥ is simplicial.
3. Xy is complete if and only if the fan 3 is complete.

By [2, Proposition 4.2.6 and 4.2.7], we can characterize smooth and Q-factorial toric varieties
by their Picard and class groups.

Proposition 2.1.19. Let Xy, be the toric variety defined by the fan 3. Then:

1. Xy is smooth if and only if Pic(Xy) = Cl(Xyx).
2. X is Q-factorial if and only if Pic(Xx;) has finite index in C1(Xy).
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2.1.2. Toric morphisms. Let N1, N be two lattices with ¥; a fan in (N7)g and X5 a fan in
(N2)r. We denote by X (resp. X2) the toric variety associated to the fan 31 (resp. ¥2).

We say that a Z-linear map ¢ : Ny — Na is compatible with the fans 31 and 35 if for every
cone 01 € Y1, there is a cone o9 € Y9 such that ¢r(01) C 02 where ¢ is the R-linear extension
of ¢. According to [2, Theorem 3.3.4], any toric morphism 7 : X1 — X9 comes from a Z-linear
map ¢ : N —> Ny that is compatible with ¥ and ¥5.

Proposition 2.1.20 ([2, Proposition 3.3.7]). Let Ny be a sublattice of finite index in No and 3; a
fan in (N;)gr such that 31 = ¥y. We set G = Ny /Ny. Then the map w : X1 — X5 induced by
the inclusion N; — Ny presents X5 as the quotient X1 /G.

The map 7 in Proposition 2.1.20 is a geometric quotient . The following results describe the
relation between torus orbits of X and torus orbits of X5.

Lemma 2.1.21 ([2, Lemma 3.3.21]). Let 7w : X; —> X3 be the toric morphism coming from a map
¢ : Ny — Ns that is compatible with 31 and Yo. Given o’ € 31, let o € Yo be the minimal cone
of X9 containing ¢r(c’). Then :

1. 7 (vs) = 7o where v, € O(c’) and y, € O(c) are the distinguished points.

2. m(O(0")) C O(0) andnn(V(0')) C V(o).

Remark 2.1.22. Note that, if 7 is surjective, then the inclusions in point 2 of Lemma 2.1.21 are
equalities.

A support function of . is a function ¢ : [3| — R that is linear on each cone of . Support
functions can be used to caracterize Cartier divisors:

Proposition 2.1.23 ([2, Theorem 4.2.12]). Let D = ZpGE(l) a,D, be a Cartier divisor of Xsx.
The support function pp : |X| — R associated to the divisor D satisfies ¢ p(u,) = —a, for any

p e X(1).

Following this proposition, it is possible to describe pullback of Cartier divisors by a toric
morphism.

Proposition 2.1.24 ([2, Proposition 6.2.7]). Let D be a torus-invariant Cartier divisor of X5 with
support function pp : |3Xo| — R. Then there is a unique torus-invariant Cartier divisor D' :=
7* D on X with the following properties :

1. ﬁXl(D/> = W*ﬁXQ(D).

2. The support function pp : |X1| — R is given by opr = ¢p o PR.

2.1.3. Toric fibrations. A proper toric morphism 7 : X1 — Xy is a fibration if 7.(Ox,) =
Ox,. According to [2, Theorem 3.4.11] and [1, Proposition 2.1], if X; and X are complete, then
7 is a toric fibration if and only if the associated map ¢ : Ny — N is surjective. We now give
specific examples of toric fibrations.

Locally trivial fibrations. Let N, N’ be two lattices and ¢ : N’ — N be a surjective
Z-linear map. Let ¥’ be a fan in Ny and ¥ a fan in Ny compatible with ¢. We set Ny = Ker(¢)
and X9 = {0 € ¥’ : 0 C (Np)r}. We have an exact sequence

0— Ny — N — N —0. (2.4)

We say that X' is weakly split by 3> and X if there exists a subfan S of ' such that :
1. ¢r maps each cone & € ¥ bijectively to a cone o € ¥. Furthermore, the map 7 — o
define a bijection ¥ — .
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2. Given & € ¥ and 0y € Yo, the sum & + o lies in ¥, and every cone of Y/ arises in this
way.
Moreover, if $(G N N') = o N N for any & € 3 with ¢ (5) = o, we say that ' is split by Y and
So.
Theorem 2.1.25 ([2, Theorem 3.3.19]). If X' is split by 3 and X, then Xy is a Zariski locally
trivial fiber bundle over X, with fiber X, n, where Xx, N, is the toric variety associated to the
fan Eo in (N(])]R.

In the case where X' is weakly split by 3 and X, for any o € X there is a sublattice N C N
of finite index such that ¥'(0) = {0’ € ¥/ : ¢r(0c’) C o} issplitby {r € ¥ : 7 < o} and
¥/(0) N 2o when we use the lattice ¢~ (N”) and N”. Let U, y~ be the toric variety associated
to the cone o in (N”)g. There is a commutative diagram

Xy, Ng X Ug Nt ———— Xy

! !

Ua,N” UO’

such that XEOJVO X UU,N// is the fiber product Xsy Xy, Ua’,N”~

Corollary 2.1.26. If Y’ is weakly split by 3 and X, then the fibers of m1 : Xs» — Xy are
isomorphic to Xx, N, -

Blowups. Let X be a fan in Ng and assume 7 € ¥ with dim 7 > 2 has the property that all
cones of X containing 7 are smooth. By Proposition 2.1.13, this is equivalent to the assertion that
the orbit closure V' (7) consists of smooth points of X. Let u; = ) u, and for each cones
o € X containing 7, set

22 (1) = {Cone(A4) : A C {u,;} Uo(1l)and 7(1) € A}.

peT(1)

The star subdivision of X relative to 7 is the fan

Y(r)={oceX:7¢o}U U X2(7).
7Co
A fan Y refines X if every cone of Y/ is contained in a cone of ¥ and |X/| = |3|. When Y’ refines
Y., the identity mapping ¢ = Idy is compatible with >’ and X. So there is a toric morphism
7 ¢ Xs«(ry — Xsx. Under 7, X5« (;) is the blowup of Xy along V'(7) and the exceptional
divisor Dy of 7 is the divisor corresponding to the ray Cone(u,) of 3*(7).

2.1.4. Intersection products. We first recall some properties of intersection product on
varieties over C. We refer to [7, Chapter 1, Section 1.4].

For a variety X and an integer k > 0, we denote by Ay (X) the k-th Chow group of X. Let
[+ X’ — X be a proper morphism of varieties. For any subvariety V' of X', V = f(V') isa
closed subvariety of X. We denote by R[V] (resp. R[V"]) the residue field of V' (resp. of V). The
residue field of V is given by 0y /m where m is the maximal ideal of 0y. We set

/ [ [R[V']:R[V]] ifdimV =dimV’
deg(V/V) = { 0 if dimV < dim V'’

where [R[V'] : R[V]] denotes the degree of the field extension. Define
fulV'] = deg(V'/V)[V].

This induces an homomorphism f, : Ax(X') — Ap(X).
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Definition 2.1.27 ([7, Definition 1.4]). Let X be a complete variety over C. If & = ), np[P]
is a zero-cycle on X, the degree of «, denoted deg(«), is defined by

deg(c) =Y np
P

and if « is rationally equivalent to zero, then deg(a) = 0. This gives an homomorphism deg :
Aop(X) — Z. We extend the degree homomorphism to all of A, X, deg : A, X — Z by
defining deg(a) = 0 if « € Ag(X) with £ > 0. For any morphism f : X’ — X of complete
varieties, and any o/ € A, X,

deg(a’) = deg(f«a'). (2.5)

Proposition 2.1.28 (Projection formula, [7, Proposition 2.3]). Let D be an effective Cartier divisor
on X, f: X' — X aproper morphism, o ak-cycle on X' and g the morphism from f ~1(|D|)N|a
to |D| N f(|«|) induced by f where |D| (resp. |a|) is the support of D (resp. av). Then,

g«(f*D-0a) = D fecx (2.6)
in Ap—1(|D] N f(la]))-

We now provide formulas that will be used to compute various intersections of toric divisors.
We assume that X is an n-dimensional toric variety given by a complete and simplicial fan >.
An element u € N is primitive if fu ¢ N for all k > 1. Let {u1, ..., uz} be a set of primitive
elements of N such that 0 = Cone(uq, ..., uy) is simplicial. We define mult(o) as the index of
the sublattice Zuy + ... + Zuy in N, = Span(c) N N.

As ¥ is simplicial, according to [8, Section 5.1], one has intersections of cycles or cycle classes
only with rational coefficients. The Chow group

A (X)g=PA4X)2Q=EP A »(X)2Q
p=0 p=0

has the structure of graded Q-algebra and,

Proposition 2.1.29. Let7, 7', 0 € ¥ such that T and 7’ span o, withdim(c) = dim(7)+dim(7’),
then
mult(7) - mult(7”)

mult(o)

V)l V()] =

This proposition is a consequence of the following Lemmas.

[V (o)l

Lemma 2.1.30 ([2, Lemma 12.5.1]). The Chow group Ay(X) is generated by the classes of the orbit
closures V (o) of the cones o € 3 of dimensionn — k.

Lemma 2.1.31 ([2, Lemma 12.5.2]). Assume that 3 is complete and simplicial. If p1,...,pq €
Y (1) are distinct, then in A*(X)q, we have

1
[Dp] - [Dpy] -+ [Dpy] = mult (o)
0 otherwise.

V(o) ifo=p1+...+pseX

Proof of Proposition 2.1.29. Let py, ..., p, € 3(1) distinct such that 7 = p; + ... + pp and 7/ =
Pp+1 + ... pg with p < ¢. By Lemma 2.1.31, we get

V()] = (Dp]- (Dy)) - Dy ]+ [Dy]) = !

mult (o)
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For any m € M, we have div(x™) = 0 in A,_1(X). In the case where p € 3(1) is a ray of

o € 3, there is m € M such that V(o) is not contained in the support of D, + div(x™). We
then set

[Dp] - [V(0)] = [Dp + div(x™)] - [V(o)]. 2.7)

2.1.5. Polytopes and ample divisors of complete toric varieties. A polytope P in
Mg is the convex hull of a finite set S C Mg, i.e

P = Conv(S) = {ZAUU:)\UZOand Z)\uzl} .

uesS uesS

Moreover, if S is a subset of M, we say that P is a lattice polytope. A subset Q C P is a face of
P, written () = P, if there are u € N \ {0} and b € R such that

Q={meMr:{(mu)=b}NP and P C{m € Mg : (m,u) > b}.

When dim P = dim Mg, the polytope P has a nice presentation with its facets (faces of P of
codimension one):

P ={m e Mg : (m,up) > —ar for all facets ' < P} (2.8)

where up € Np is an inward-pointing facet normal of the facet F'. For any face () of P, there is
a cone o of Ng defined by

o0g = Cone(up : F contains Q). (2.9)

Thus, for a facet ' < P, o is the ray generated by ur and op = {0} since {0} is the cone
generated by the empty set. Hence, the set

Yp={og:Q =X P}

is a complete fan in Ng. We denote by X p the toric variety associated to > p and we define the
divisor Dp associated to P by

Dp = ZCLFDF
F

where Dp is the divisor of X p corresponding to the ray Cone(ur).
Let D =" pex(1) a,D, be a Cartier divisor on a complete toric variety Xy. The polyhedron

Pp ={m € Mg : (m,u,) > —a, forall p € (1)}

is a polytope and
I'(Xs,0x,(D)= € C-x™

mePpNM

Definition 2.1.32. Let .Z be the sheaf of sections of the rank one vector bundle 7 : ¥ — X
on a variety X. A subspace W C I'(X,.Z) has no basepoints if for every p € X, thereis s € W
with s(p) # 0.

Definition 2.1.33. Let D be a Cartier divisor on a complete toric variety Xy. We set W =
I'( Xy, Ox.(D)).
1. The divisor D and the line bundle O, (D) are very ample when W has no basepoints and
the map ¢p : X — P(WV) is a closed embedding.



Chapter 2. Toric varieties and coherent sheaves 27

2. The divisor D and the line bundle Ox, (D) are ample when kD is very ample for some
integer k > 0.

On toric varieties, we can characterize ample divisors by using the Toric Kleiman Criterion.

Theorem 2.1.34 ([2, Theorem 6.3.13]). Let D be a Cartier divisor on a complete toric variety Xs..
Then D is ample if and only if D - C' > 0 for all torus-invariant irreducible curves C' C Xs,.

If D is an invariant ample divisor on X7y, then D (or Ox,, (D)) will be called a polarization.
We call the pair (Xx, D) or (Xx, Ox,. (D)) a polarized variety. We have the following result
between polytopes and polarized varieties.

Theorem 2.1.35 ([2, Theorem 6.2.1]). The maps P — (Xp, Dp) and (Xx, D) — Pp define
bijections between the sets

{P C Mg : P is a full dimensional lattice polytope}

and
{(Xs, D) : ¥ a complete fan in Ng, D a torus-invariant ample divisor on Xx}.

Moreover, these maps are inverses of each other.

According to Theorem 2.1.35, the polarized toric variety (X, D) gives a polytope P C Mp.
For each p € X(1) we denote by P” the facet of P corresponding to the ray p € ¥(1). We recall
that a lattice M defines a measure v on Mp as the pullback of the Haar measure on My /M. It is
determined by the properties

i. v is translation invariant,

ii. v(Mg/M) = 1.
For all p € (1), we denote by vol(P?) the volume of P? with respect to the measure determined
by the affine span of P” N M. Danilov in [3, Section 11] shows that:

Proposition 2.1.36 ([3, §11.12]). Let (X, D) be a polarized toric variety corresponding to a lattice
polytope P. For all ray p € ¥(1), vol(P?) = D, - D"~ 1,

Remark 2.1.37. We will use this proposition to compute the slope of sheaves.

2.2. EXAMPLES OF TORIC VARIETIES OF PICARD RANK ONE AND TWO
2.2.1. Toric varieties of Picard rank one. Let qg,q1,...,q, € N* such that

ged(qo, - -+, qn) = 1.

We set N = Z" /7 - (qo, . . . , gn). The dual lattice of N is
M ={(ag,...,an) GZ”+1:a0q0+...+anqn:O}.

We denote by {u; : 0 < i < n} the images in N of the standard basis vectors in Z" 1. So the
relation qp ug 4+ q1 u1 + . . . + ¢n 4, = 0 holds in IV. The toric variety associated to the simplicial
fan ¥ = {Cone(A) : A C {uo, ..., un}} is the weighted projective space P(qo, q1, - - -, qn)-

Proposition 2.2.1 ([20, Corollary 2.3]). Let X be a complete simplicial fan in Ny such that
|X(1)| = n+1, wheren = dim Xs,. There is a weighted projective space P(qo, . . . , q,) and a finite
abelian group H acting on P(qo, . .., qn) such that X5, ~ P(qo, ..., qn)/H. Moreover Xy, ~ P"
when X is smooth.
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Proof. Let {u; : 0 < i < n} be the set of ray generators of ¥. There are ¢; € Z such that
> qui = 0. As ¥ is complete, we deduce that for any i € {0,...,n}, ¢ > 0. Hence, we
can assume that ged(qo, ..., qn) = 1. Let N/ be the sublattice of N generated by wuy, . . ., uy,.
The toric variety associated to 3 in Ny is P(qo, . .., gn). By Proposition 2.1.20, we get Xy, =~
P(qo, - -.,qn)/H where H = N/N'. O

Let qo,...,qn € N*suchthatl = ¢y < ¢ < ... < gy, andqi|Z?ZOQj fori € {0,...,n}.
We denote by (eq, .. ., ey,) the dual basis of (u, ..., u,). Let X = P(qo,...,q,) and L = —Kx.
The Q-Cartier divisor L is ample on X. We denote by P the polytope corresponding to (X, L).
The point m = mje; + ... + mpey, € M liesin P ifand only if m; > —1for 1 <¢ < nand

ami+...+gmy < qo.

Hence (—1,...,—1) is a vertex of P. The others vertices (my, ..., m,,) of P are given by mj, =
—1fork e {l,...,n}\{i} and gym1 + ... + gnmy = qo; thus

ot qat... .+ qn
m; = —1.

q;

It follows that
P = Conv(0, kyeq, ..., knen) — (1,...,1)

where q; ki = Z;‘L:(] qj-
2.2.2. Smooth toric varieties of Picard rank two. Let X be a smooth toric variety of di-

mension n with fan ¥ in R such that rk Pic(X') = 2. By [2, Theorem 7.3.7] due to Kleinschmidt
[22], there are r, s € N* withr + s =n and a1,...,a, € Nwitha; < a9 < ... < a, such that

X=P <ﬁps @® é ﬁps ((J,Z)) . (2.10)

=1

We denote by m : X — P? the projection to the base P°. By [2, Section 7.3], the rays of ¥

are given by the half-lines generated by wo, w1, . . ., ws, vo, v1, . . . , v, where (wy, ..., ws) is the
standard basis of Z° x Ozr, (v1, ..., v,) the standard basis of 0zs x Z",
vo=—(v1+...+v,) and wy=a1v1+ ...+ av, — (W1 + ...+ ws).

The maximal cones of ¥ are given by
Cone(wo, . .., wj, ..., ws) + Cone(vy, ..., Vs, ...,v)

where j € {0,...,s}and i € {0,...,r}. We denote by D,, the divisor corresponding to the ray

Cone(v;) and D,,; the divisor corresponding to the ray Cone(w;). We have the following linear
equivalence,

{ Dvi ~lin Dvo —atiO fori € {1,...,7’} 2.11)

Dyy; ~lin Dy forje{l,...,s} ° )

By (2.11), we deduce that Pic(X) is generated by D,,, and D,,.

Proposition 2.2.2 ([4, Proposition 4.2.1]). Let D = aD,,, + 5D,, be an invariant divisor of X
with o, B € Z. Then, the divisor D is ample if and only if &« > 0 and § > 0.
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By Theorem 2.1.14, the anti-canonical divisor of X is given by
T S
Ky = ZDW + Z Dy, ~iin (8 +1—a1 — ... — a;) Dy + (r + 1) Dy (2.12)
i=0 =0

Thus, X is a Fano variety if and only ifa; + ... + a, < s.

Remark 2.2.3. The sheaf Ox(D,,) of X is isomorphic to the twisting sheaf of Serre Ox(1).
Therefore, for any «, 8 € N*, Ox (aDyy, + 8D,,) = 7 0Ops () @ Ox ().

2.2.3. Polytope of a polarized toric variety of Picard rank two. Let X be a smooth
toric variety given by (2.10) and L = 7*0ps (1) ® Ox (1) a Q-divisor of X with v € Q~¢. For k €
{1,...,s}, weset Ay = Conv(0, w1, ..., wg). By [14, Section 4], the polytope corresponding to
the Q-polarized variety (X, L) is given by

P = Conv (vAg x {0} U (a1 + v¥)As x {v1}U... U (ar + v)As x {v.}) .

We denote by PV (resp. P"7) the facet of P corresponding to the ray Cone(v;) (resp. Cone(wj)).
The facet P" is the convex hull of

vAs x {0} U...U(a;j—1 + v)Ag x {vi—1} U (aip1 + V) As X {viz1} U .. U (ar +v)Ag X {0}
and P" is isomorphic to
vAs_1 x {0} U (a1 +v)Aso1 x {v1}U.. U (ar +v)As—1 X {0} .
Proposition 2.2.4 ([14, Proposition 4.3]). Letcg,cq,...,¢, € Nandv € Qsq. The volume of the
polytope
P = Conv ((cog +v)As x {0} U (1 + v)As x {1} U... U (¢ + v)As X {v;})
is given by
(5 )
k=0 do+.Adyr=s—Fk
Therefore, for any j € {0, ..., s},

S

1
-1
vol(PY7) = Z (S +£ > Z adt .. adr | Wk

k=0 di+..+dr=s—k—1

and

VoY) — ~(s+r—1 di . ,dr k
vol(P") = i Z aj ayr | vh .

k=

o

Ifi e {1,...,r}, we have

S
. s+r—1 d di—1 d; d k
vol(P") = Z < . ) Z ai' e ags e | U

k=0 di+...+d; 1
+di+1+~~-+dr:v37k

All these formula will be used in Chapter 3 when we study the stability of the logarithmic tangent
sheaves on toric varieties of Picard rank two.
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2.3. STABILITY OF EQUIVARIANT REFLEXIVE SHEAVES

2.3.1. Coherent and equivariant sheaves. Let X = Spm(R) be an affine variety. A
nonzero element f € R gives the localization Ry such that Xy = Spm(Ry) is the open subset
X \ V(f). Given an R-module M, we get the R¢-module M; = M ®g Ry. According to [12,

Proposition I1.5.1], there is a unique sheaf M of O x-modules such that

M(Xy) = M
for every nonzero f € R.

Definition 2.3.1. Let X be a locally Noetherian scheme and .# a sheaf of 0'x-modules. We
say that .% is quasicoherent if X has an affine open cover {U,}, U, = Spm(R,), such that for
each q, there is an R,-module M, satisfying L%Ua = Ma. Moreover, if each M, is a finetely
generated R,-module, then we say that .% is coherent.

Definition 2.3.2. Let X be a locally Noetherian scheme and & a coherent sheaf. A coherent
subsheaf .7 of & is saturated if the quotient sheaf & /.7 is torsion-free. Given a point x € X,
the fiber of & at x is defined as a vector space

E(x) = & oy, R(x) (2.13)
where R(z) = Ox ,/m, with m, the maximal ideal of Ox ,.

Let X be a normal toric variety with torus 7. We denote by 6 : T' x X — X the action of
TonX,pu:T xT — T the group multiplication, pry : ' X X — X the projection onto the
second factor and pros : T X T' x X — 1" x X the projection onto the second and the third
factor.

Definition 2.3.3. A coherent sheaf & on X is T-equivariant if it is equipped with an isomor-
phism ® : 0*& — pr3 & such that

(b xIdx)*® = priyz @ o (Idp x 6)*D. (2.14)

We call ¢ a T-linearization of &. A morphism of equivariant coherent sheaves is a morphism
compatible with the linearizations.

Remark 2.3.4. If G is an algebraic group acting on the affine toric variety Y = Spm(R), we
define an action of G on R by setting : forany g € Gand ¢ € R, g- ¢ = ((Z)gﬂ)* © where

bg(x) =g - .
Fort € T,letay : X — T'x X and ¢ : X — X be the morphisms given by o (z) = (¢, z)
and ¢(z) = 0(t,x). If & is an equivariant sheaf on X with linearization ®, then

O =P PrE — &

is an isomorphism such that, for any ¢,¢" € T, the cocyle condition (2.14) factors as follows:

t &
A (2.15)

&

D,/

(P4)*E

¢:%
(o
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Let ¥ be the fan of X, & an equivariant coherent sheaf on X and o0 € 3. We denote the
space I'(Us, &) by E°. For s € E7 and g € T, we denote by ¢;s € E? the canonically lifted
section of ¢;&". We define the action of 7" on E by setting : for g € T'and s € E”,

g-s=,1 ((¢g-1)"s) .

As the sheaf & is coherent, there is a decomposition E7 = @, ., Ey, such that for any g € T
ande € EJ, g-e = x""™(g)e. This decomposition makes £? an M-graded C[S,]|-module.

2.3.2. Families of filtrations of equivariant reflexive sheaves. For o € ¥, we define
an order relation <, on M by setting m <, m/’ if and only if m' — m € S,. We write m <, m’
if we have m <, m’ but not m’ <, m.

Definition 2.3.5 ([33, Definition 5.17]). Let E be a finite dimensional vector space and let for
each o € ¥ a set of vector subspaces { EZ, },,,c s of E. We say that this family is a multifiltration
if:
1. For 0 € ¥ and m =, m/, Ey, is contained in E7,. Moreover £ =", E7.
2. For each chain - -- <, m;_1 <, m; <o --- of elements of M, there exists ig € Z such
that £7, = 0 for all i < 4.
3. For each o € %, there exist only finitely many vector spaces EJ, such that

ES, ¢ > E.

m/<sm

4. (compatibility condition) For each 7 < o with S; = S, + Z>o(—m,) we consider with
respect to the preorder <, the ascending chains m + 7 - m, for « > 0. By condition 3
and because E is finite dimensional, the sequence of vector subspaces Ey,.,,, becomes
stationary for some i;,, € Z. We require that E, = Ey, 7 ., forallm € M.

Remark 2.3.6. Note that we are using increasing filtrations here, rather than decreasing as in [23].

Let B = {EZ }, be a family of vector spaces. For each relation m =, m/, let there be
given a vector space homomorphism x7, .. : E7, — E7, such that x7, ,, = Id and x7, .., =
Xt it © Xy fOT €ach triple m <, m’ <, m”. If F = {F%},, is another family of vector
spaces with vector space homomorphisms %) . ,, then a morphism ¢ : £ — F'is a set of vector

space homomorphisms {¢9, : EJ, — F,‘,’l}me m such that o7, o X7, ., = ¥7, ., 0 @7, for all

m
m,m’ € M with m <, m/. We then have the following result:

Theorem 2.3.7 ([33, Theorem 5.18]). The category of torsion free equivariant coherent sheaves is
equivalent to the category of families of multifiltrations of finite dimensional vector spaces.

We recall that a reflexive sheaf on X is a coherent sheaf & that is canonically isomorphic to
its double dual &VV. So for an equivariant reflexive sheaf & on X and o € ¥, we have

NU,&) =T |J U6 | = () TWU,&).

pea(l) p€a(l)

Hence, an equivariant reflexive sheaf & on a toric variety Xy is uniquely determined by the
family of multifiltrations ({ £}, }) pex(1) of a vector space E.
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Remark 2.3.8. The vector space E can be seen as the fiber &'(x() where x is the identity element
of T and we define the vector subspaces { Ef,} as follows: let 7, € O(p) be the distinguished
point, we set

Ef = {e eE: lim x™(t)(t-e) exists}

t-xo—>yp, t€T
where ¢ - e is an element of &(t - ().

Let p € 3(1). As Ef, = E it m —m’ € M(p) = p= N M and M /M (p) = Z, we set
EP((m,up)) = E7,.

m:*

To a family of multifiltrations

E:= (E, {Ep(j)}pezu),jez) (2.16)
with E°(j) C EP(j + 1), we can assign an equivariant reflexive sheaf & := &(EE) defined by
I'Us, &) @ ﬂ ((m,up)) @ x™ (2.17)
meM peo(1)

for all positive dimensional cones o € ¥, while I'(Uypy, &) = E ®@ C[M]. From now on, the
family of multifiltrations given in (2.16) will be called a family of filtrations.

Notation 2.3.9. For any 0 € X, we write
LU, &)= @ Eg @ x™
meM

where £, is a vector space.

Example 2.3.10 (Filtrations of invertible sheaves). Let X be a toric variety associated to a com-
plete fan ¥ and D = Zpez a,D, be an invariant Weil divisor of X. For any p € (1),

T(U,y, Ox(D)) =T(U,, 6y,(a,D,)) = P C-x™.

meM, (m,up)>—a,

Therefore,
. 0 ifj<—a
P(i) — P
E (])_{ C ifj>—a,
for p € 3(1) and j € Z is the family of filtrations of &x (D). O

Example 2.3.11 (Tangent sheaf). The family of filtrations of the tangent sheaf 7 of X is given
by

0 ifj <—1
E*(j) = Span(u,) ifj=—1
N®zC ifj>-1
This is a consequence of Theorem 3.1.5. O

We now describe equivariant locally free sheaves on toric varieties. By [19, Theorem 3.5],
equivariant locally-free sheaves over affine toric varieties are free. The local freeness property
is given by Klyachko’s compatibility condition for the filtrations E”(7) in [23, Theorem 2.2.1].
Here we give this condition in term of increasing filtrations.

Proposition 2.3.12 ([32, Proposition 4.24]). The sheaf & is locally free if and only if for any
o € X there exists a multiset A, C M /M (o) of size k(&) and a T-eigenspace decomposition
E=@,,ca, E7, such that

EP(i) = b E; (2.18)

mer', <muup>§7:

foranyp € o(1).
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2.3.3. Some stability notions. In this part, we are interested in the notion of slope stability.
We refer to the paper of Takemoto [36] for the definitions. We denote by Amp(X) C N1(X)®z
R the ample cone of X. Let & be a torsion-free coherent sheaf on X. The degree of & with respect
to an ample class L € Amp(X) is the real number obtained by intersection

degy (&) = (&) - L"
and its slope with respect to L is given by

deg; (&)
&)= ——".
ML( ) I‘k(éa)
Definition 2.3.13. A torsion-free coherent sheaf & is said to be slope semistable (or semistable
for short) with respect to L € Amp(X) if for any proper coherent subsheaf of lower rank .# of
&, one has
pr(F) < pr(é).

When strict inequality always holds, we say that & is stable. We say that & is polystableif it is the
direct sum of stable subsheaves of the same slope. Finally & is said to be unstable with respect
to L if & is not semistable with respect to L.

Notation 2.3.14. Let & be a torsion-free coherent sheaf on X. We denote by

Stab(&) = {L € Amp(X) : & is stable with respect to L} and
sStab(&) = {L € Amp(X) : & is semistable with respect to L} .

Proposition 2.3.15 ([25, Claim 2 of Proposition 4.13]). A reflexive polystable sheaf on X is a
semistable sheaf on X isomorphic to a (finite, nontrivial) direct sum of reflexive stable sheaves. Let
& be a semistable reflexive sheaf on X. Then & contains a unique maximal reflexive polystable
subsheaf of the same slope as &

If & is an equivariant reflexive sheaf on a normal toric variety X, according to [25, Proposition
4.13] and [14, Proposition 2.3], it is enough to test slope inequalities for equivariant and reflexive
saturated subsheaves.

Proposition 2.3.16. Let & be an equivariant reflexive sheaf on X. Then & is semistable (resp.
stable) with respect to L if and only if for all saturated equivariant reflexive subsheaves % of &,

pi(F) < pr(&) (resp. pr(F) < pr(é)).

Let & be an equivariant reflexive sheaf on a normal toric variety X given by the family of
filtrations (E ALEP(G) Y pesq), jeZ)' From the previous proposition, it is crucial for us to under-
stand the description of equivariant reflexive and saturated subsheaves of & in terms of families
of filtrations. This is the content of the following lemma.

Lemma 2.3.17 ([5]). Let I be a vector subspace of E' and .% an equivariant reflexive subsheaf of
& given by the family of filtrations (F, {F'*(i)}) with F*(i) C EP(i). Then .# is saturated in &
if and only if for all p € ¥(1),1 € Z,

FP(i) = EP(i)N F.

Proof. As % is an equivariant sheaf, the quotient sheaf & /.% is equivariant. For any p € %(1),
one has I'(U,, & /.F7) =T'(U,,&)/I'(U,, F) and

D(Up, &/ F )m = EP((m,up)) [FP({m, up)) © x™
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for any m € M.
We assume that there is (p, i) € 3(1) x Z such that F*(i) # EP(i) N F. Let

ip =min{i € Z: FP(i) # EP(i)N F}
and v, € M such that Mg = Ru, ® Span(u,)® with (v,,u,) = 1. There is e € F N (E(ig) \
F*(ip)) such that 0 # & € E’(ig)/F*(i9p) where € denotes the image of e in E(iy)/F*(io).
Then, as e € F' and as F*(i) = F for i large enough, there is m € S, with (m + igv,, u,) = 1,

such that } ‘ A
e® Xm-i—zovp c Fp(<m + iO V,, Up>) ® Xm-i—zovp - F® Xm-‘rzovp.

Thus € ® X% = 0in I'(U,, & /.7 ). Hence, & /.7 has nonzero torsion. Therefore, if £ /.7 is
torsion-free, then F?(i) = Ef(i) N F for any (p,i) € (1) x Z.

We now assume that for any (p,i) € X(1) x Z, FP(i) = E”(i) N F. We use Notation 2.3.9.
For any o € X, we set

E°=T(U,,&)= P Ej, @ x™ and F" =I(U,,.F)= P Fax™
meM meM

We will show that E?/F7 is a torsion-free C[S,]-module. Let e € EZ, and € be its image in
E? /FZ such that there is m’ € S, with

inT(Us, &)t /T (Usy F )y We have
e Xm-{—m’ € F(Um g)erm/

andthene € F7 . C F. As F}, = EJ, N F, we get e € Fy,. Hence, £ /F is a torsion-free
C[S,]-module. Therefore, &/.% is torsion-free. O

Notation 2.3.18. Let F' be a vector subspace of E. We denote by &F the saturated subsheaf of
& defined by the family of filtrations (F, {F”(j)}) where F*(j) = F N EP(j).

By [25, Corollary 3.18], the first Chern class of an equivariant reflexive sheaf & with family
of filtrations (F,{E*(j)}) is given by

(&) =— Y ,(&)D, (2.19)

peEX(1)

where

(&) = (dim(E*(5)) — dim(E*(j — 1))).
JEZ

Therefore, for any L € Amp(X),

nL() = —— @ p;l) 1,(&) degy (D,). (2.20)

According to these two formulas and Example 2.3.10, if & is the invertible sheaf O'x (D,), then
for any L € Amp(X),

1L (&) = degy (D). (221)

Thanks to Lemma 2.3.17, if & is an equivariant reflexive sheaf, we have the following control
on the number of values used in comparing slopes:
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Lemma 2.3.19. The set {ur(&F) : FF C E with(0 < dim F' < dim E'} is finite.

Proof. For any p € X(1), there is (j,, J,) € Z? such that E°(j) = {0} if j < j, and E*(j) = E
if j > J,. For any vector subspace F' of I/, we have

Jp
() = 3 (dm(E () 0 F) — dim(B*(j — 1) 0 F)).
J=Jp
As the set {dim(E*(j) N F) —dim(EP(j —1)NF) : F C E, j € Z} is finite, we deduce that
{tp(&F) : F C E} is finite. We can conclude using Formula (2.20). O






STABILITY OF EQUIVARIANT LOGARITHMIC
TANGENT SHEAVES

In this chapter, we study slope-stability of the equivariant logarithmic tangent sheaf
Ix(—log D) where X is a normal toric variety and D a reduced invariant Weil
divisor of X. In the first part, we give a condition on a divisor D that ensures the
existence of a polarization L such that 7x(—log D) is (semi)stable. In the other
sections, we give a complete description of divisors D and polarizations L such that
Ix (—log D) is (semi)stable with respect to L when X has Picard rank one or two.

3.1. DESCRIPTION OF EQUIVARIANT LOGARITHMIC TANGENT SHEAVES

3.1.1. Logarithmic tangent sheaves. We recall here the definition of the logarithmic tan-
gent sheaf of a log pair (X, D) where X is a normal projective variety of dimension n and D a
reduced Weil divisor on X.

Definition 3.1.1. We say that a pair (X, D) is log-smooth if X is smooth and D is a reduced snc
(simple normal crossing) divisor. We denote by (X, D),g the snc locus of the pair (X, D), that
is, the locus of points x € X where (X, D) is log-smooth in a neighborhood of z.

If (X, D) is log-smooth, we define the logarithmic tangent bundle T'x (— log D) as the dual
of the bundle of logarithmic differential form Q% (log D) where Q% (log D) is defined in [17, §1].
By [21, Definition 4] and [34, §1], we can see the space of sections of T'x (— log D) as the set of
vector fields on X which are tangent to D at its smooth points.

Let (z1,...,2) be alocal coordinate system for X. If D is given by (z1 --- 2z = 0), then
Tx(—log D) as a sheaf is the locally free &'x-module generated by

L0 0 9 9
Y92 R0 Bz Dz

Definition 3.1.2 ([11, Definition 3.4]). Let (X, D) be a log pair and Xy = (X, D);eg. The
logarithmic tangent sheaf of (X, D), denoted by Jx (—log D), is defined as j.Tx,(—log D|x,)
where j : Xg — X is the open immersion.

The sheaf 7x (—log D) (as well as its dual) is coherent; by [13, Proposition 1.6], this sheaf
is reflexive. We now consider the case where X is a toric variety with torus 7. Let 3 be the fan
of X and let X{ be the toric variety corresponding to the fan ! = ¥(0) U X(1). We denote by
J : Xo — X the open immersion.

37
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Proposition 3.1.3. Let D be a reduced Weil divisor on X. The sheaf QY (log D) is equivariant
compatibly with its subsheaf Q% if and only if D is a torus invariant divisor of X .

Proof. We assume that D is an invariant divisor under the torus action. Let Dy be the restriction
of D on Xy. Fort € T, let ¢y : X — X be the map defined by ¢,(z) = t - = and P,
the map defined by ®; = (dqbt)fl where d¢; is the differential of ¢;. If & = T X, we have
an isomorphism ®; : ¢;{& — & and the diagram (2.15) is verified. Now if we replace & by
Tx,(—log Dy), the diagram (2.15) remains true; so T’x, (— log Do) is an equivariant subsheaf of
Tx,. Hence Q%(O (log Dyg) is an equivariant sheaf compatibly with its subsheaf Qko. As

Ok (log D) = 5.0, (log Do) , (3.1)

we deduce that Q% (log D) is an equivariant sheaf compatibly with its subsheaf Q.

We now assume that Q% (log D) is an equivariant sheaf compatibly with its subsheaf Q.
We write D = 22:1 Dy, where the D), are irreducible Weil divisors of X.

First case. We assume that X is smooth. By [6, Properties 2.3] we have an exact sequence of
equivariant sheaves

S
0 — Q% — Qk (log D) — @ Op, — 0
k=1

where O, is viewing as a sheaf on X via extension by zero. Hence, for any x € X, the sequence

0— Q% , — Qx (log D), — EB Opyw —0
k=1

is exact. Let Z = X \ D. If there are x € Z and ¢t € T such thatt -z € D, then

S S
@ ﬁDk@ = @ ﬁDkJ-x ;
k=1 k=1

this is absurd. Thus, forany ¢t € T,t-Z C Z, thatist- Z = Z. Therefore, for any t € T,
t- D = D ;thus, D is a torus invariant divisor.

Second case. We assume that X is a normal variety. By (3.1), as 24 (log D) is equivariant, we
also have the same property for Qﬁ(o (log Dy). By the first case, Dy is an invariant divisor under
the action of 7" on Xj. As codim(X \ Xo) > 2, we deduce that D is the Zariski closure of D
on X. Thus, D is an invariant divisor under the action of 7" on X. O

Remark 3.1.4. For the first part of the converse, another proof consists in observing that the deter-
minant of Q% (log D) is Ox (K x + D), while the determinant of QY is Ox (Kx). If Q% (log D)
is equivariant compatibly with its subsheaf (2%, then Ox is an equivariant subsheaf of O'x (D).
This means that D is a torus invariant divisor of X.

3.1.2. Families of filtrations of logarithmic tangent sheaves. Let X be a toric vari-
ety of dimension n associated to the fan 3. By Proposition 3.1.3, the logarithmic tangent sheaf
TIx (—log D) is an equivariant subsheaf of the tangent sheaf if and only if

D=> "D,
pEA

where A C 3(1). For p € 3(1), we set EF =TI'(U,, Ix(—log D)).
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Theorem 3.1.5. Let A C X(1) and D = ZpGA
The family of filtrations (E, {Ep(j)}peg(l),jez) corresponding to the logarithmic tangent sheaf
Ix(—log D) is given by

D, be an invariant reduced divisor of X.

. 0 ifj<-1 :
(i) =
E?(j) {Nc ifj >0 ifpe A

and by

0 ifj < -2

Ef(j) = Span(u,) ifj=-1 ifpd A.

N¢ lfj >0

Proof. We first assume that X is smooth. By [21, Proposition 1], the following sequence is exact.
0 — Tx(—log D) — Tx — @ 6p,(D,) — 0 (3.2)
pEA

By the orbit-cone correspondence (cf. Theorem 2.1.12), if p € A, then U, N D = U, N D,,
otherwise U,N D = @&. Therefore, forany p ¢ A, T'(U,, T'x (—log D)) = T'(U,, Tx ). According
to (3.2) and Theorem 2.3.7, we can reduce the problem to the case where A contains one ray. For
the rest of the proof, we assume that A = {pg}. Let p € ¥(1) and (u1, ..., uy) be a basis of N

such that u; = u,. We denote by (e1, ..., e,) the dual basis of (u1, ..., u,) and we set z; = x.
We have C[S,] = Clzy, 3, ...,z

First case : We assume that p = pg. As on U, the divisor D is defined by the equation x; = 0,
we have

E? = (C[S]-:L‘li D éC[S]- 0 .
r 81‘1 i—9 p 8951
We set
LY = @ C-mereli andfori € {2,...,n}, L= @ C-x™ 0 :
1 8[131 3 ) 3 3 81:1

mesS, mesS,

According to Remark 2.3.4, forany t € T and m € M, t-x™ = x ™(t)x", sot-dx; =

. O _ epn @
X% (t)dx;. Thus, we have t - 9z, X (t) Dz,

Fori € {1,...,n}, we write

L = @ (Lf)m where (Lf)m:{fGLfZt'f:Xim(t)f}‘
meM

We have

C . mter
(L), = X 0y

0 otherwise

if0 <, m

and fori € {2,..., n},

m-re; 8 3
(1), =4 C X gy H e

0 otherwise

In local coordinates (1, . . ., x,), the tangent space of the Lie group T at the identity element is

generated by ( a(?ci

) . As the tangent space of T" at the identity element is isomorphic to N¢,
1<i<n

foralli € {1,...,n}, we can identify % with u;. Fori € {1,...,n}, we set LY = Span(u;).
Letm € M.
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« Ifi=1and 0 <, m, then (Lf),  is isomorphic to with L ® x™.

« Ifi > 2and —e; <, m, then (L) is isomorphic to L ® x™.
We set j = (m,u1). The condition 0 <, m is equivalent to j > 0 and for i € {2,..., n},
—e; =, mis equivalent to j > 0. Thus, for any i € {1,...,n}, we set

4 0 ifj<-—1

By construction, {L! ()} is the family of filtrations of L. As EX = @, EP((m, u1)) ® X™
where E((m,u1)) = @, L!((m, u,)), we get

. 0 ifj<-—1
4 ~ —
E(J)—{ Ne ifj>0

Second case : We assume that p # po. As U, N D = &, we have

n

T 0 0
E”:G?(C[Sp]-%:@ @C-Xma—%

i=1 \mes,
, P 0
Foralli € {1,...,n}, weset L = C[S,] - . We have
T
(C~Xm+eii if —e; <, m
L = @ (Lf),, where (L?) = O, v
meM 0 oherwise

Form € M, we set j = (m, uy). The condition —e; <, m is equivalent to j > —(e;, u1). Thus,
foralli € {2,..., n}, the filtrations of L! are given by

. 0 ifj<-—1
0 . >

and the filtrations of LY are given by

) 0 ifj<-2
p _ —
As in the first case, we get
0 if j < -2

EP(j) = ¢ Span(u,) ifj=-1
N&,C ifj>0

If X is normal, then for any p € %(1), I'(U,, Ix(—log D)) = T'(U,, T'x,(—log D\x,)) where
X is the toric variety of the fan 3(0) U X(1). By using the smooth case, we get the proof. [

The sheaf of regular sections of the trivial vector bundle X x C — X of rank 1is Ox. By
Example 2.3.10 the family of filtrations (F, {F*(j)},ex(1), jez) of Ox is given by

. 0 ifj<-1
14 _ =
F(j)_{c if j >0

Corollary 3.1.6. Let D =} v 1y D). Then the morphism Ox ® Lie(T) — Ix(—log D) is
an isomorphism.
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Proof. The family of filtrations (E, { E*(j)}) of & = 9x(—log D) is given by

. 0 ifj <1
14 _ =
E(J)_{ N®zC if j>0

Hence, for any p € ¥(1), ['(U,, &) = O0x(U,) ® Nc. O

Notation 3.1.7. Let G be a vector subspace of N¢. We denote by &g the subsheaf of & =
Tx (—log D) defined by the family of filtrations (Eq, {G"(j)} pex1), jez) Where Eg = G and
G?(j) = EP(j)NG.Ifp € Aoru, ¢ G, then

. 0 ifj<—1
14 _ =
G(])_{G ifj >0

If p¢ Aandu, € G, then

0 ifj < —2
GP(j) = { Span(u,) ifj=—1
G if j >0

3.1.3. Decomposition of equivariant logarithmic tangent sheaves. In this part, we
give some conditions on 3 and A which ensure that the logarithmic tangent sheaf is decompos-
able. We first recall the family of filtrations of a direct sum of equivariant reflexive sheaves.

Proposition 3.1.8 ([18, Section 6.3]). Let .# and & be two equivariant reflexive sheaves with

(F, {F?())}pesr), jez) and (G, {GP(j)}pes1), jez) for families of filtrations. The family of
filtrations of # & ¢ is given by

(F @G, {(F&G) (1)} esq),jezn) where (F&G)(j)=F(j) ®G"(j). (33)

We assume that X is a toric variety without torus factor. We denote by p the rank of the class
group Cl(X) of X. By Corollary 2.1.17, we have card(X(1)) = n + p.

Proposition 3.1.9. Let A C ¥(1) such that |A| = pand D = )
p € X(1)\ A), then & = Tx(—log D) is decomposable and

&= P ox(D,)

pES(\A

pea Dp- If Nr = Span(u,, :

Proof. We set (1) \ A = {p1, ..., pn}. According to Example 2.3.10, for all k € {1,...,n}, the
family of filtrations (F},, {F}(j)}) of Ox(D,,) is given by

. 0 ifj <0 .
Pl —
FiG) = { Span(u,) ifj >0 itp 7 pr

and
. 0 ifj<—-1 .
14 _ —
Fk (j) - { Span(up) lfj > 1 lfp = Pk-

Forall p € (1) and j € Z, we have

X . 0 ifj<-1
14 o >
kE_Ble(j)—{ Ne ifj >0 ifpe A
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and
n 0 ifj < 2
@F;f(j) =< Span(u,) ifj=-1 ifp¢ A .
k=1 Nc if7>0
Hence, by (3.3) and Theorem 3.1.5 we get & = @}._, Ox(D,, ). O

We also have the following result, the proof is similar to the proof of Proposition 3.1.9.

Proposition 3.1.10. We assume that A satisfies 1 + p < card(A) < n + p — 1. The sheaf
& = Ix(—1log D) is decomposable and & = g ® & where G = Span(u, : p € X(1) \ A) and
F' a vector subspace of N¢ such that Nc = G & F.

3.1.4. An instability condition for logarithmic tangent sheaves. Let A C (1) and

D=> "D,

pPEA

be an invariant reduced Weil divisor on X. Let (Eq, {G”(j)},ex(1), jez) be the family of filtra-
tions corresponding to the subsheaf &5 (cf. Notation 2.3.18) of & = Jx (— log D) where G C N¢
is a vector subspace. By Equation (2.20), if L is a polarization of X, we have

1
pi(6) = - > deg(Dy) (3.4)
PEA
and 1
n(ée) = g—m > degi(D,). (3.5)
p¢A and u,e€G
Therefore,
p ey (11 1
pi(&) — po(és) = T dmaG > degy (D) + - > degr(D,). (39

PEA, up,€G PEA, upy &G
According to Proposition 2.3.16, we have the following Lemma.

Lemma 3.1.11. To check the stability of & with respect to L, it suffices to compare j11,(&) with
pr(Er) when ' C Span(u, : p ¢ A) and1 < dim F <n — 1.

Proof. Let G be a vector subspace of £/ such that 1 < dim G < n — 1. We set
F = Span(u,: p ¢ Aandu, € G).
If dim F' # 0, then by (3.5), we get u1.(8a) < pur(ér). O

Proposition 3.1.12. If1 < card(X(1)\ A) < n—1, then forany L € Amp(X), the logarithmic
tangent sheaf & = Jx(—log D) is unstable with respect to L.

Proof. We assume that ¥(1) \ A = {p1,..., px} where 1 < k <n —1 and we denote by D; the
divisor corresponding to p; = Cone(u;). For G = Span(uy, ..., uy), we have

k
us(8) = ualb) = (3 = g ) Do dews(Dy) <0
j=1

because the numbers deg; (D;) are positive. Thus, & is unstable with respect to L. O
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Corollary 3.1.13. We set p = 1kCl(X). If1 + p < card(A) < n + p — 1, then for any
L € Amp(X), the logarithmic tangent sheaf Tx (— log D) is unstable with respect to L.

Proof. If 1 + p < card(A) < n+p — 1, by using
card(X(1)) = n+ p = card(A) + card(X(1) \ A),
we get 1 < card(X(1) \ A) < n — 1; we can conclude with Proposition 3.1.12. O

Remark 3.1.14. By Corollary 3.1.6, if card(A) = n + p, Fx(—log D) is semistable with respect
to any polarization.

From now on, we will study the (semi)stability of x (— log D) only in the case where 1 <
card(A) <p=rkCl(X) and p € {1,2}.

3.2. STABILITY OF EQUIVARIANT LOGARITHMIC TANGENT SHEAVES

3.2.1. Stability on weighted projective spaces. In this section, we assume that X =
P(qo, - - -, qn) with ged(qo, - - -, ¢n) = 1. We use the notation of Section 2.2.1 and we denote by D;
the divisor of X corresponding to the ray Cone(u;). Let A; = {0,...,n}\{i} fori € {0,...,n}.
We set & = Tx(—log D;).

Proposition 3.2.1. Let L € Amp(X). The sheaf & is polystable with respect to L if and only if
there is ¢ € N* such that for all j € A;, q¢; = q.

Proof. We first show that ¢;D; ~y, ¢;jD;. For m = (ag,...,a,) € M defined by a; = g,
aj = —giand ap, = 0ifk € A; \ {j}, we get div(x™) = ¢;D; — ¢;D;. Hence, ¢;D; ~iin q;D;.
Therefore, for any L € Amp(X), ¢; deg; (D;) = ¢; degy (D;).

The assumptions of Proposition 3.1.9 are verified. Hence, & = P, 4, Ox (D;). By Equation
(2.21), we get

ui(Ox(D))) = degy (D)) = gdegmm

If & is polystable with respect to L, there is € Q such that for all j € A;, ¢; = r ¢;. Hence, we
have the existence of ¢ € N* such that for all j € A;, g; = g. For the converse, if for all j € A;,
we have ¢; = ¢, then & is polystable. O

According to Proposition 2.3.15, we get :

Corollary 3.2.2. Foralli € {0,..., n}, sStab(9x(—log D;)) # @ if and only if there exists
q € N* such that forall j € A;, q; = q. Moreover, if for all j € A;, qj = q, then

@ = Stab(JIx(—log D;)) C sStab(Jx(—log D;)) = Amp(X).

3.2.2. Condition of stability on toric varieties of Picard rank two. In this part,
we adapt some results of [14, Section 4] for the study of the stability of Fx(—log D) when
X =P (Ops @ D;_, Ops(a;)) with0 < a1 < ... < a,. We use notation of Sections 2.2.2 and
2.2.3. The following lemma will be useful in the proof of Proposition 3.2.5 which is the main
result of this part. Let z € {0, ..., — 1} such that a, = 0 and a,4+1 > 0, we have:

Lemma 3.2.3 ([14, Lemma 4.2]). Let I’ C {0, 1...,r} and G = Span(v; : i € I'). The vector
a1v1 + ... + a,yv, belongs to G if and only if

i {z+1,...,7} CI'or

ii. {0,...,2} C I card({z+1,...,7}\I') > 1anda; = aj foralli,j € {z+1,...,7r}\ I
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Let P be the polytope corresponding to the Q-polarized toric variety (X, L) where L =
T Ops (V) @ Ox (1) with v € Qso.

Notation 3.2.4. For all i € {0,1,...,r}, we set V; = vol(P"). Asforall j € {1,...,s},
vol(P%i) = vol(P™0), we set W = vol(P™0).

Let A C ¥(1) and D be an invariant reduced Weil divisor of X given by D = >° 1 D
We set

= {Cone(vp),...,Cone(v,)} ,
Jy, = {Cone(wy), ..., Cone(ws)} ,
I={ie{0,1,...,r}: Cone(v;) € Iy \ (I NA)} and
J={je{0,1,...,5} : Cone(w;) € Ju \ (Jx NA)}.
According to Lemma 3.1.11, to study the stability of & = T'x(—log D) with respect to L, it

suffices to compare p, (&) and p1,(6) when G = Span(v;,w; : i € I',j € J') with I’ C I,
J'C Jand1 <dimG < (r + s). By Proposition 2.1.36, (3.4) and (3.5), we get

pur(&) = s (ZV + card(J) - W>

el

and
1 /
pr(éa) = dm (; Vi + card(J’) - W) .
Here is a version of [14, Proposition 4.1] for logarithmic tangent bundles.
Proposition 3.2.5. The logarithmic tangent bundle & = Jx (— log D) is stable (resp. semistable)

with respect to L = 7*Ops (v) @ Ox (1) if and only if uy (&) is greater than (resp. greater than or
equal to) the maximum of

1. Vi, whereiy =min [ if I # @ ;

1
2 F(ZieIV) ifr' = dim Span(v; :i € I) # 0 ;

d(J) - W
3. (M(S/),if0<s’:dimSpan(wj:jEJ)<7'+3;
1
4 P (Yier Vi+ (s + )W), ifcard(J’) = s+1,k = card(I') < rand{z+1,...,r} C
s
I'cr;
1
5. (Xicr Vi+ (s + )W), ifcard(J) = s + 1, k = card(I') < r and I' C T such

hj khe condition ii. of Lemma 3.2.3 is verified.
Proof. We set G = Span(v;, w; : ¢ € I', j € J') where I’ C I and J’ C J. In Proposition
3.2.5, each point corresponds to a value of 111,(&¢) for some G. In particular, (1) corresponds to
G = Span(vj, ), (2) corresponds to G = Span(v; : i € I) and (3) corresponds to G = Span(wj :
jed).
If card(J") = 0, then for @ C I’ C I, we have dim G < r and

G d szz,

this number is less than or equal to the maximum of the numbers given in (1) and (2).
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If card(I") = 0, then for @ C J’ C J such that dim G < r + s, we have

_card(J')-W
Hl%e) = g

this number is less than or equal to that given in (3).
If card(I') = 7+ 1, then dim G < r + s ifand only if s’ = card(J') < s.If 1 < s’ < s, then

1 1
,U,L(éog) = 'r+s’ (ZVZ +S/W> < max (7" ZV“W> .

el iel’

If1 <card(I') <r,1 < card(J') < sand dim G < r + s, then uy,(&g) is less than or equal
to the maximum of numbers given in (1), (2) and (3).

It remains to study the case where card(J’) = s+ 1 and 1 < card(I’) < r (because if
card(I’) > r, we have dim G = r + s). We will treat it in two cases.
First case : a, = 0. Foralli € {1,...,r}, V; = V. If ¥/ = card(I’) and 1 < ¢/ < r, then

pur(éa) = L (Z Vi+ (s+ 1)W> < max (VO, (s—i—j)VV) :

/
r+s
iel’

Second case : a, > 0. We set ' = card(I’). If I’ satisfies the first (resp. second) condition of
Lemma 3.2.3, then the value of p,(&£5) is given in the point (4) (resp. (5)). If I’ does not satisfy
the conditions of Lemma 3.2.3, then dim G = ' + (s 4+ 1). Moreover, if 7’ + (s + 1) < r + s,
then the number p 1, (&¢) is less than or equal to the maximum of the numbers given in (1) and

(3). O
Remark 3.2.6. If a; = ... = a, = 0, to check the stability of & with respect to L, it is enough
to compare (7, (&) with the numbers given by the points 1, 2 and 3 of Proposition 3.2.5. In that
case, we have
—1 —1
W= <8+T , )us_l and V,; = (S—i—r )1/8. (3.7)
5 — s

If (a1,...,ar) # (0,...,0), the results below will help us to determine if & is unstable with
respect to L without having to check each point of Proposition 3.2.5. Let z € {0,1,...,r — 1}
such that a, = 0 and a,4+1 > 0 where ap = 0. Let k € {0, ..., s}. We set

d d
Vor = E azt'-a¥ and Wy = g ay-adr
dos 14 Fdr=s—k dopr4 Adr=s—1—k

where Wy = 0. Fori € {z +1,...,7}, we set

o dzy1 di—1 diy1 d
Vik = E A
dot1+...+di—1
+diy1+...+dr=s—k

and fori € {1,...,z}, we set V;i = V.

Remark3.2.7. If r = 1, we set Vis = land for k € {0,...,s — 1}, Vi, = 0. We have W,_; =1
and V;s = 1 foranyi € {0,...,r}.

Lemma 3.2.8. Foralli € {1,...,7}, Vg =a;W +V,.
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Proof. To show the lemma, it suffices to show that: forany k& € {0,...,s—1},a;Wg+V;p = Vog.
Ifi € {1,...,z}, the equality is true because a; = 0. We assume thati € {z +1,...,7}, we
have

2 : dzt1 d
VOk — azj_l . arr
doir 4ot dp=s—k
_ } : dzy1 d § : dzy1 d
= azil .-.ar'r_|_ azjrl ...aTT'
dz+1+---+d7‘:5_kf dz+1+---+dr:5_k
d;=0 d;>1

The first term of the second line corresponds to the number V;; and the second to a; Wy, (it
suffices to replace d; by d; + 1). Hence, Vo, = Vi, + a; Wi L]

Lemma 3.2.9. Let (a1,...,a,) # (0,...,0)
1 Ifa, > 2,thensVg — (s + 1)W > sV,.
2 Ifr>2andic{l,...,r — 1} witha; < a,, then V; — W > V,..

Proof. If a, > 2, then (s —

Hence,

S+1>:ars—(s—|—1) 2s — (s+1)

ar

> (0 because s > 1.
ar ar

s+1

r

1 1
_ <8_s+ >V0+8+ v,

sVo — (S + 1)W =sVoy — (VO — Vr)

ar ar
1 1

> <s—8+ )VT+S+VT:3VT.
(e7% T

AsVy=a;W+V; =a,W+V,, wegetV,; = (a, —a;) W+ V,.Ifa, > a;, thena, —a; > 1;
therefore V;, > W + V... ]

3.3. STABILITY ON SMOOTH TORIC VARIETIES OF PICARD RANK TWO

3.3.1. Stability of logarithmic tangent bundles on a product of projective spaces.
We assume that a; = ... = a, = 0. Let X be the fan of X, we have X =2 P x P". We denote by
m : X — P°and mg : X — P" the projection maps. Let

{D;Uj:OSjSS} and {D:HIOSZ'ST}

be respectively the set of invariant divisors of P* and P" such that for any j € {0,...,s} and
any i € {0,...,7},
11Dy, = Dy, and w3D,, = D,,

where D,, and D,, ; are the invariant divisors of X defined in Section 2.2.2. We will show that:

Theorem 3.3.1. Leti € {0,...,r} andj € {0,...,s}. Then:

1
1. Ix(—log D,,) is polystable with respect to m* Ops (V) @ Ox (1) if and only if v = 5 —: ;

2. Ix(—log D) is polystable with respect to m* Ops (v) @ Ox (1) if and only ifv = %;
3. Ix(—log(Dy, + Dy;)) is polystable with respect to 7 Ops () ® Ox (1) if and only if v =

S| ®»
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Let A CX(1)and D =} A D, be an invariant reduced divisor of X. As Ix = m] Tps &
7y Jpr, for any A C (1) such that |A| € {1, 2}, the logarithmic tangent sheaf Fx (—log D) is
decomposable. The proof of Theorem 3.3.1 will then rely on this lemma.

Lemma 3.3.2. Leti,i' € {0,...,7} andj,j' € {0,...,s} such thati # i’ and j # j'. Then:
1. Ix(—1log(Dy, + Dv,,)) = w1} Tps & w3 Tpr (— log(Dy, + Dy,,)).
2. x(~10g(Du, + Duyy)) = 1 T log(D),, + Diy.)) @ 5 Fpr.
3. & = Ix(—log D,,) satisfies

I8
ExmiTme | @ w56w(D))
k=0, ki

4. & = Ix(—log Dy,) satisfies

S
x| P 70p(D,,) | 5T
k=0, k+j

Proof. We will only show the point 3. Let 31 be fan of P°. We denote by py the ray of ¥; corre-
sponding to the divisor D;,,. According to Example 2.3.11, the family of filtrations (¥, { F**(j)})
of Jps is given by
0 ifj < -1
Fre(j) = { Span(uw) ifj = —1
Span(wy,...,ws) ifj>—1

By Proposition 4.1.1 (the map ¢ is the projection Z° x Z" — Z°7), the family of filtrations of
7] Ips is given by
0 ifj <—1
Free(j) =4 Span(wy) ifj=—1
Span(wy,...,ws) ifj > —1

and
~ . 0 ifj <0
Pv =
Fr(5) { Span(wy,...,ws) ifj >0
where p,, = Cone(vy) and p,,, = Cone(wy) are the rays of ¥. As 75 Opr (D;, ) =~ Ox(Dy,), by
Example 2.3.10 the family of filtrations (G, {G”(j)}) of 75 Opr (D, ) is given by

. 0 ifj <0
Pli) —
G*) = { Span(vg) ifj >0

if p # py, and
. 0 ifj < —1
Pu _
G () = { Span(vg) ifj > —1

Using the Equation (3.3), the family of filtrations of the sheaf on the right side of the decompo-
sition is equal to the family of filtrations of Jx (—log D,,). O

In Table 3.1, we give the values of v for which & = Jx(—log D) is semistable with respect
to 7 Ops (V) ® Ox(1). We use the fact that a direct sum of vector bundles is semistable if and
only if each summand is semistable with the same slope (cf. Proposition 2.3.15). We recall that

by Equation (3.7), V; = "YW for any 1 € {0,...,r}. Weset V = W
§ s
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Divisor D sStab(&) References
1
D, ,0<i<r =2 + Theorem 3.3.1
r
ij ,0<5<s V= rj— 1 Theorem 3.3.1
DU]. + ij V= 3 Theorem 3.3.1
r
D,, + va ,0<i<j<r 1] Proposition 3.3.3
Dy; + Dy, ,0<i<j<s 1%} Proposition 3.3.3
Table 3.1: Stability of Zx(—log D) whena; =...=a, =0

Proof of Theorem 3.3.1. We start with & = Jx(—log D,,). We use the point 3 of Lemma
3.3.2. By (2.21), we have

pL(m30pr (Dy, ) = degp(Dy,) =V
forany k € {0,...,r} \ {i}. The first Chern class of ps is given by

1(Tos) ZD

Therefore

s

mier(Tps) =Y Duy, and  pup(wf Tps) = ZdegL wi) =
k=0

1
s+ W,

As 7} Tps is stable with respect to L, we deduce that & is polystable with respect to L if and only
if SHW =V = W, je v = 5t
If & = Ix(—log Dy, ), we use the point 4 of Lemma 3.3.2. We have
r—+1
r

V.

pL(mi Ops (D)) =W and g, (5. Tpr) =

Hence, & is polystable with respect to L if and only if ’”t—l\/ =W=2V,iev= 1.
We now consider the case & = Jx (—log(D., + Dy,)). By Proposition 3.1.9, we have

S

& = @ ﬁX(Dwk) ©® @ ﬁX(D”l)

k=0, k] 1=0, I#£i

As deg; (Ox(Dy,)) = W for any k € {0,...,s} \ {j} and deg; (Ox(Dy,)) = V forany ! €
{0,...,7} \ {i}, we deduce that & is polystable with respect to L if and only if W = V = =W,

ie.v =2, O
T

Proposition 3.3.3. Leti,i’ € {0,...,r} and j,j" € {0,...,s} such thati # i’ and j # j'. For
any L € Amp(X), the logarithmic tangent bundles 7x (—log( Dy, +D,,,)) and Tx (—log(Dy, +
D)) are not semistable with respect to L.

Proof. Let & = Ix(—log(Dy; + Dy,)) and L € Amp(X). We use the point 1 of Lemma
3.3.2. If r > 2, then Fpr(—log(D,, + D;,,)) is unstable with respect to Lpr by Corollary 3.1.13.
Therefore, & is unstable with respect to L. If 7 = 1, we have Jpr (—log(D;, + Dy, ,)) = Opr. As

* % S+1
pr(m30pr) =0 and  pp (] Jps) =

W £ 0,
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we deduce that & is unstable with respect to L. O

Remark 3.3.4. According to (2.11) and (2.12), when a; = ... = a, = 0, we have:
Dvi ~lin Dvo s ij ~lin Dwg and — Kx ~iin (3 + 1)Dwo + (T + 1)Dv0-

In each point of Theorem 3.3.1, we see that Jx (— log D) is polystable with respect to L if and
onlyif L =2 Ox(—a(Kx + D)) with o € N*.

CASE WHERE VARIETIES ARE NOT PRODUCTS OF PROJECTIVE SPACES

We now study the stability of Zx(—log D) when X = P (Ops & @;_, Ops(a;)) with a, > 1.
Let A C ¥(1) and D = 3 A D). By Corollary 3.1.13, we will only study the case where
card(A) € {1,2}. The case card(A) = 0 was treated by Hering-Nill-Siiss in [14] and Dasgupta-
Dey-Khan in [4]. In the following theorem, we give a classification of pairs (X, D) such that
Stab(Ix(—log D)) # @ or sStab(Zx (—log D)) # @. More precisely, we give the values of
v for which & = x(— log D) is (semi)stable with respect to 7* Ops (1) ® Ox (1) in the Tables
3.2, 3.3, 3.4 and the references therein.

Theorem 3.3.5. Let X = P(Ops @ Ops(aq) ® ... Ops(a,)) with(aq,...,a.) # (0,...,0) and
D a reduced invariant divisor of X. Then:

1. Thereis L € Amp(X) such that x (—log D) is stable with respect to L if and only if:
i (a1,...,a,)=1(0,...,0,1)and D = D,,, or

ii. ay =...=a, with(r —1)a, < (s+1) and D = D,,.
2. There is L € Amp(X) such that Ix (—log D) is polystable with respect to L if and only if:
i ay=...=a, with(r —1)a, < s and

D €{Dyy+ Dy; : 0<j < s} U{Dyy + Dy, : 1 <0 <1y

ii. orl<ay <ag=...=a, and D = Dy, + D,, with{(s) > 0 wherel : N* — R is
the map given by

=5 () (DY (Y

j=0
3. Otherwise, the sheaf Tx (— log D) is unstable with respect to any polarization.

Remark 3.3.6. We will show in Section 3.3.5 that if py € N satisfies ¢(pp) > 0, then for any
ln(l +ar — al)
In(a,) —In(a1)”
Before proving this theorem, we give a similar version of Lemma 3.3.2. We recall that ag = 0.

p > po, £(p) > 0. If r = 2, the condition £(s) > 0 is equivalent to s >

Lemma 3.3.7. We assume that a, > 1.
1. Ifi € {0,...,r} and j € {0,...,s}, then & = Tx(—log(Dy, + Dy,)) is decomposable

and
S T

= P oxw)|a| P ox(Dy)

1=0, 1] k=0, k#i
2. Ifi,j € {0,...,s} withi # j, then the sheaves # = Ix(—log(Dw, + Dy,)) and & =
Ix(—log Dy, ) are decomposable and

S S

F=| @ ox(Du)|ooxoFs , & D oxDu) | @&
k=0, k¢{i,j} k=0, k#j

where G = Span(vg, ..., v,).

I
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3. If D = Dy, + Dy, for0 < i < j <, then the sheaf & = Jx(—log D) is decomposable. If
a; < aj, then
T

& = (é ﬁx(le)) D @ ﬁX(ka)
=0

k=0, k¢{7”]}

Ifa; = aj, then
ggc?g@ﬁx

where G = Span(wy, v : 1 € {0,...,s}, k€ {0,...,r}\ {i,5}).

Remark 33.8. If D € {D,, : 0 < ¢ < r}, then the sheaf & = Jx(—logD) is not always
decomposable. In particular, if we assume that r = 2, s = 1, a3 = 0 and az = 1, then
& = Ix(—logD,,) is decomposable with & = & @& &g where F' = Span(vz,w;) and
G = Span(vp). But % = Ix(—log D,,) is not decomposable.

Let L = 7*Ops(v) ® Ox (1) be a Q-polarization of X. We recall that, for any j € {0,..., s}
and any i € {0,...,r},

deg(Dw,) =W and deg.(D,,) =V;

where W, Vo, ..., V, are polynomials of v defined on Section 2.2.3. To check the stability of
the logarithmic tangent sheaves, we will use the description of its saturated subsheaves given
in Notation 3.1.7 and also the description of invertible sheaves given in Example 2.3.10. We will
also need the sign changes rule of Descartes [29, Chapter 5, Section 4.3].

Theorem 3.3.9 (Descartes). Let P = ¢, X" + ¢ 1 X" ' + ...+ ¢ bea polynomial with real
coefficients where c,, co # 0. Let p the number of sign changes in the sequence (cy, ..., ¢,) of its
coefficients and q the numbers of positive real roots, counted with their order of multiplicity. Then,
there ism € N such that ¢ = p — 2m.

3.3.2. Case of divisors coming from the base.

Proposition 3.3.10. Let (a1,...,a,) # (0,...,0). Foranyi,j € {0,...,s} withi # j, the
sheaves & = Ix(—log Dy,) and # = Ix(—log(Duw, + Dy,)) are unstable with respect to any
polarization.

Proof. We use the point 2 of Lemma 3.3.7, Proposition 2.3.15 and Equation (2.21). Let L =
T 0Ops (V) ® Ox(1). We first consider the sheaf .#. As pr(0Ox) = 0 and pur(Ox(Dy,)) =
W # 0, we deduce that .# is not semistable with respect to L.

We now consider the sheaf &. By Lemma 3.2.8, we have Vo = a, W+ V,.. Asa, > 1, for any
ke {0,...,s},

pr(Ox (Dw,)) = W < Vo = pr(Ox (Dyy))-

Ifr = 1, then &g = Ox(Dy, + Dy,). As ur(8a) = Vo + Vi, we deduce that & is not polystable
with respect to L. Hence, & is unstable with respect to L.

We now assume that r > 2. If the sheaf &g is unstable with respect to L, then & is unstable
with respect to L. Otherwise, if &g is semistable with respect to L, then

pr(Ox(Dyy)) = Vo < pr(8c)

because Ox (D, ) is a subsheaf of &g. Therefore, 111, (Ox (Dy,.)) < pr(6c). Hence, & is unstable
with respect to L. O
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Divisor D Condition on r Condition on Stab (&) sStab(&)
and q; S
Dy ,0<5<s
i T = > 1and >1 >1 (%] %]
Proposition 3.3.10 r=tandar = 5=
D, ,1<i<r-—1
vio i == r>2anda, >1 s>1 1%} o
Proposition 3.3.12
>1 =1
D,, F= hlr and s>1 O<v<iy | 0<v<y
Apr_1 = 0
> 1and > 2
Theorem 3.3.13 r 2 lLand(a, > s>1 %} o]
or a,_1 # 0)
r=1 s>1 O<vr<uy O<v<iy
Dy, r>2and a1 < a, s>1 1] %)
Theorem 3.3.15 r > 2 and a > % %} o]
Lemma 3.3.14 aL=ar=a §§a<fi—l O<v<uyn | O<v<y
Theorem 3.3.17 ar < s m<rv<y | vy
Table 3.2: Stability of x (— log D) when a, > 1
Divisor D Condition on 7 and a; | Condition on s | sStab(&)
Dy, +D, ,0<i<j<
w’+..w3’0_l<‘]_8 r>1landa, >1 s>1 %)
Proposition 3.3.10
D, +D, ,1<i ) <
”1+..UJ’ St<JsT r>2anda, >1 s>1 o
Proposition 3.3.11
Dy, + Dy, >0
and1 <:<r r>1landa, > 1 s>1 1]
Proposition 3.3.11
DUO—i-ij,Ogjgs r=1 s>1 V=19
Theorem 3.3.15 r>2anda; < a, s>
Lemma 3.3.14 r > 2 and s<a(r—1) %)
Proposition 3.3.18 a1 =a, =a s>a(r—1) V=19
Dy, + Dy, ,2<i<r r>2anda; < a, s>1
Lemma 3.3.14 r > 2 and s<a(r—1) 1%
Theorem 3.3.18 a=a,=a s>a(r—1) V=1,

Table 3.3: Stability of Zx (—log D) when a, > 1
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Divisor D Condition on 7 and a; | Condition on s | sStab(&)
r=1 s>1 v>0
Dy, + Dy, r>2and0=qa; < a, s>1 1%}
r > 3and as < a, s>1 o}
Theorem 3.3.15 r > 2and s<a(r—1) %)
Proposition 3.3.19 al=...=a, =a s>a(r—1) V=1
Proposition 3.3.18 r > 2and l(s) <0 1)
Proposition 3.3.20 O<ai<ags=...=a, (s) >0 vV =1y

Table 3.4: Stability of Zx (—log(Dy, + Dy, )) when a, > 1 with ¢ given in (3.8)

3.3.3. Sum of divisors coming from the base and the bundle: first part. In this
section, we study the stability of 7x (—log D) when D € 2 with

D ={Dy, : 1 <i<r}U{Dy, + Dy, :1<i<rand0<j<s}
U{Dy, + Dy, : 1 <i<j<r}.

Proposition 3.3.11. Letr € N* and a, > 1.
1. Forany j € {0,...,s} andi € {1,...,7}, the sheaf & = Tx(—log(Dy, + Dy,)) is
unstable with respect to any polarization.
2. Ifr > 2andi,j € {1,...,r} withi # j, then the sheaf # = Tx(—log(Dy, + D.,)) is
unstable with respect to any polarization.

Proof. By the point 1 of Lemma 3.3.7, & is direct sum of line bundles. As p1,(Ox (Dy,)) = W <
Vo = pr(Ox(Dy,)), we deduce that & is not semistable with respect to L.

For the sheaf .7, we use the point 3 of Lemma 3.3.7. If a; = aj, then & is not semistable.
Otherwise, if a; # a;, we have pur(Ox(Dy,)) = W < Vo = pur(Ox(D,,)); hence & is not
semistable with respect to L. O

Proposition 3.3.12. Letr > 2 and (a1,...,a,) # (0,...,0). Foranyi € {1,...,r — 1}, the
logarithmic tangent bundle & = Jx(—log D,,,) is unstable with respect to any polarization.

Proof. For L € Amp(X ), we have

s+ )W+ (Vo+... 4V, 1+ Vg +...+V,)
r+s '

pr(€) =
As by Lemma 3.2.8, we have Vg — W > V., we get

(r+5)(Vo—pr(é)) =(s +1)(Vo — W) = V.
+((r=1)Vo—(Vo+...+Vict + Vigr + ...+ V,1))
(s+1)(Vo—W) -V,

>
>(s+ 1)V, =V, =sV,.

Therefore, by Proposition 3.2.5, & is not semistable with respect to L. O

We now study the stability of Zx (—log D,,.).
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Theorem 3.3.13. Let r > 1 and a, > 1. We have Stab(Ix(—log D,,)) # @ if and only if
sStab(Ix(—log D,,)) # @ if and only ifa, = 1 and a,—1 = 0. Ifa, = 1 and a,_1 = 0,
then the logarithmic tangent bundle Tx(—log D,, ) is stable (resp. semistable) with respect to
T Ops (V) @ Ox (1) ifand only if 0 < v < vy (resp. 0 < v < 1) where v is the positive root of

Po(2) :§ <s+2— 1)$k _8<s+z— 1)xs_
k=0
Proof. Let & = Ix(—log Dy, ) and L = 7*Ops(v) @ Ox(1). We have
(r+s)pur(&)=(s+1)W+Vo+Vi+...4+V,_1.
If a, > 2, by using the first point of Lemma 3.2.9 and the fact that V; < V(, we get :
(r+s)[Vo— (&) =(sVo—(s+ )W) +rVo— (Vo+ ...+ V,_1) > sV,..

By Proposition 3.2.5, Zx (— log D,,.) is not semistable with respect to L.
Ifr>2anda,_1 =a, =1,thenV,_; = V,. As

(r+ 8)[Vo — pr(6)] = (s + D)[Vo — W] = Vy_y + [(r — 1)Vg — (Vo + ... + V,_2)]

(s +
(s+1)V, —V,_1 Dbecause Vo — W >V,
s

(A\VARAYS

Ve

we deduce that Jx (—log D, ) is not semistable with respect to L by Proposition 3.2.5.
Let r > 1. We now assume that a,_; = 0 and a, = 1. By using the expressions of Section
2.23,wehave Vo = ... = V,_1 = V where

s s—1
_ s+r—1\ . - s+r—1\ .
V—kgz()( I >1/ and W—g:O( I )1/ .

The points 4 and 5 of Proposition 3.2.5 are not verified in this case. To check the stability of & it
is enough to compare

V4 (s+1)W
'uL(g)_ r+ s

with max(V, W). We have (r + s)(ur(&) — W) =7V — (r — 1)W > 0 because W < V and

(r+s)(pp(&) = V) =(s + W — sV
=§<8+2_1>uk—3<3+2_1>y5:PO(V) .

By the sign rule of Descartes (see Theorem 3.3.9), the polynomial Py has a unique positive root
vo. If v > 0, then Po(r) > 0 (resp. Po(v) > 0) if and only if v < vg (resp. v < vyp). Thus,
Ix(—log D,,.) is stable (resp. semistable) with respect to 7*0ps(v) ® Ox(1) if and only if
0<v<uyg(resp. 0 < v < 1yp). O

3.3.4. Sum of divisors coming from the base and the bundle: second part. In this
part we study the stability of the logarithmic tangent bundle Jx (—log D) when r > 2 and

D € {Dyy} U{Dyy + Dy, : 0 < j < s} U{Dy, + Dy, :2 <0 <1}

The last case D = D,,, + D,,, will be studied in Section 3.3.5.
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Lemma 3.3.14. Letr > 2, (a1,...,a,) # (0,...,0) such thatay < a,,i € {2,...,r} andj €
{0,...,s}. Weset& = Ix(—log Dy,), F = Ix(— log(Dvo—&—sz)) and¥9 = Ix(—log(Dy, +
Dy;)). For any L € Amp(X), the vector bundles &, .7 and¥ are not semistable with respect to L.

Proof. We have pur(&) > pr (%) and pr(&) > pr(¥). We will show that Vi > pr(&). By
Lemma 3.2.9, we have Vi — W > V,.. Therefore

(r+s)(Vi—pr(&)=0r+s)Vi—(Vi+...4V,) = (s+1)W
(S+1)( W)—VT—F((T—l)Vl—(V1+...+VT,1))
> (s+D(Vi-W) -V,
> SVr
By Proposition 3.2.5, &, .# and ¢ are not semistable with respect to L. O]
Let a € N*. We now study what happens in Lemma 3.3.14 when a; = ... = a, = a. We first

consider the case r = 1.

Theorem 3.3.15. We assume that X = P (Ops @ Ops(a)). Let Py and Q be the polynomials
defined by

s—1 s—1
Pi(z) =(s+1) Z (Z) a** gk — 525 and Q(z) = 2° — Z <Z> e
k=0 —

We have :
1. Ix(—log D,,) is stable (resp. semistable) with respect to 7 Ops(v) @ Ox (1) if and only if
0 <v <y (resp. 0 < v < vy) where vy is the unique positive root of P1.
2. Ifj € {0,..., s}, then Tx(—log(Dy, + Du,)) is semistable with respect to m* Ops (v) ®
Ox (1) if and only if v = vo where vy is the unique positive root of Q.
3. @ = Stab( Ix(—log(Dy, + Dy,))) € sStab( Ix(—log(Dy, + Dy,))) = Amp(X).

Proof. By the sign rule of Descartes (Theorem 3.3.9), P1 and Q) have a unique positive root. Let
L = 7*0ps(v) ® Ox (1), by using the expressions of Section 2.2.3, we have :

Vi=v® and W= Z<>Sk1k

By Proposition 3.2.5, to check the stability of & = Ix(— log D,,), it is enough to compare

Vi+ ({1 +s)W
1+ s

with max(Vy, W). We have (&) > W and (1 + s)(ur(€) — Vi) = P1(v). Thus, & is stable
(resp. semistable) with respect to L if and only if 0 < v < v (resp. 0 < v < 1y).

Let # = Jx(—log(Dy, + Du;)). By the point 1 of Lemma 3.3.7, .7 is semistable with
respect to L if and only if Vi = W. As Q(v) = V1 — W, we deduce that .% is semistable with
respect to L if and only if v = vs.

Let ¥ = Ix(—log(Dy, + Dy, )). By the point 3 of Lemma 3.3.7, we have

G = P Ox(Du,).
=0

Asforany [, ur,(Ox(Dy,)) = W, we deduce that ¢ is polystable with respect to L. O

pr(&) =
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We now consider the case r > 2anda; = ... = a, = a with a € N*.
m+p—1
Lemma 3.3.16. We have card{(a1,...,0p) E NP : a1+ ...+ ap =m} = .
m
We recall that V5 = 1. By Lemma 3.3.16, for all k € {0,...,s — 1},
s—k+r—2
W — d1 - dr — s—k—1
ST UG il ey
di+...4+dr=s—k—1
and L )
d dyr S—K—+1r— —k
Vi = Z as? - al :< .k >as .
do+...+dr=s—k
By using th lit " P , fi k€ {0,. 1}
using the equali =— or an — 1},
y g quality p—1 n—p+1 y
s—k+r—2\ ;4 Ss—k(s—k+r—2\ . 1, s—k
F ( s—k—1 >a r—1 s—k “ a(r —1) 1k
Theorem 3.3.17. Letr > 2and X =P (Ops © Ops(a1) @ ... D Ops(ay)) witha; = ... = a, =

a where a € N*. We set & = Ix(—log D,,). Let P1 and Q be the polynomials defined by:
— k 1 -1 -1

Z g BEREEDN fshr=DNy e (T s
= a(r —1) k s

S (s

>—‘D

We have :
1 Ifa < ; then & is stable (resp. semistable) with respect to 7 Ops (V) ® Ox (1) if and only if

vy < v < vy (resp. vo < v < vy1) where v| and vy are respectively the positive roots of P1
and Q.

1
2. If <a< 8—1-71 then & is stable (resp. semistable) with respect to 7 Ops (V) @ Ox (1) if
and only if 0 < v < vy (resp. 0 < v < v1) where vy is the positive root of Py.

1
3. Ifa> Ll then for any L € Amp(X), & is not semistable with respect to L.
”” p—

Proof. We first explain the condition which ensures the existence of positive roots on P and Q.
We write i
x):Zakxk and Q(x Zﬂkm
k=0

-1
Fork € {0,...,s —1},a; > Oifand only if k < (1 — ag—&—l)> s. Therefore,

-1
o If M > 1, then for any > 0, Py (z) < 0.
s
-1
o If M < 1, then Py has only one positive root v;.

s+
For k € {0,...,s — 1}, B < O if and only if k¥ < s — ra. Therefore,
o If ra > s, then for any z > 0, Q(x) > 0.
+ Ifra < s, then QQ has only one positive root vs.
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s
We now show that : If ¢ < —, then 1y < 1. As
T

Pi(z) Q) :§[<1_MM_1+s—k> <s+r—1>vlk} o

—s r as(r—1) ra k
k=0
s—1
—(r+s) s+r—1 k
= E =P
asr( T—l k:o < k )Vlkx (z)

Pi(r2) Q(ra)

and = P(1»2) < 0, we deduce that P (2) > 0. By using the fact that, for x > 0,

r
Pi(xz) > 0if and only if 0 < z < vy, we deduce that vy < 1.
We can now study the stability of &. Asa; = ... = a,, we have V1 = ... = V,.. Therefore

rVi+ (s +1)W
pilé) = : r(+5 ) '

By Proposition 3.2.5, to check the stability of &, it is enough to compare p7, (&) with max(Vy, W).
We have

(r+s)(up(€) = Vi) = =sVi+ (s + )W

s s—1
s+r—1 s+r—1
:52< I >V1kyk+(5+1)2( I )kak

k=0

and
(r+s)(ur(&) —W)=rVy — (r— )W

s—1
_ 1
Z<S+7’ 1>V1k]/ _ r—l Z<S+I: )ka

k=0 =0
Therefore,

1
i Ifa> 84_71 then for any v > 0, we have Py (v) < 0.

1
i. fa < s T then P1(v) > 0 (resp. Pi(v) > 0)ifand only if 0 < v < vy (resp.
r—
O<r< I/1).

iii. Ifa > ﬁ, then for any v > 0, we have Q(v) > 0.
r

iv. Ifa < f, then Q(v) > 0 (resp. Q(v) > 0) if and only if v > vy (resp. v > o).
r

The point i. shows the third point of the theorem. By using the points ii. and iv, we get the first
point of theorem. Finally, the points ii. and iii. give the second point of the theorem. O

We now study the stability of #; = Jx (—log(Dy,+Duw,)) and ¥; = Tx (—log(Dy,+Dy,))
wherei € {1,...,r}andj € {0,...,s}.
Proposition 3.3.18. We assume thatr > 2 and X = P (Ops ® Ops(a1) @ ... D Ops(a,)) with
ap = ... = a, = a wherea € N*. Leti € {1,...,r} and j € {0,...,s}. Weset F; =
Tx (—log(Dy, + Duw;)), 4% = Tx(—log(Dy, + Dy,)) and

a0 =5 (1= 75) (73 et ()
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1 Ifa > il’ then for any L € Amp(X), .%; and %; are unstable with respect to L.
r_

2 Ifa< il’ then % and 9; are polystable with respect to 7 Ops (V) ® Ox (1) if and only
”" —_
if v = vo where vy is the unique root of Q.
Proof. We first study the polynomial Q. We write Q(z) = > _;_, a 2. For k € {0,...,s — 1},
ap > 0ifand only if £k < s — a(r — 1).

o« If 0> i 1,thenforanya:20,Q(x) > 0.
r_

s
cIf a< PEET then Q has a unique positive root vs.

Asay = ... =ap, forany k € {1,...,7}, ur(Ox(D,,)) = Vi and for any | € {0,...,s}
pr(Ox(Dy,)) = W. By Lemma 3.3.7 (points 1 and 3), .%; and ¥; are direct sum of line bundles.
Hence, .#; and %; are polystable if and only if W = V. As Q(v) = Vi — W, the sheaves .%;
and ¥; are polystable if and only if v is positive root of Q. O

3.3.5. Sum of divisors coming from the bundle. In this part, we assume that & =
Ix (—1og(Dy, + Dy, )). We will study the stability of & when r > 2 and a; < a,. The stability
of & when r = 1 was treated in Theorem 3.3.15. When r > 2, in Proposition 3.3.18, we studied
the stability of & whenay = ... = a,.

Proposition 3.3.19. Let (a1,...,a,) # (0,...,0) and & = Tx(—log(Dy, + Dy, )).
1. Ifa; = 0, then for any L € Amp(X), & is unstable with respect to L.
2. Ifr > 3 and az < ay, then forany L € Amp(X), & is unstable with respect to L.

Proof. We have
(s+DW+Vy+...4+V,
&) = :
H() r+s
First point. As card{2,...,7} = r — 1, by using the point 4 of Proposition 3.2.5 with I’ =
{2,...,7}, we get

1 1
e Vi IW | =———(Va+...+V HW) .
p— (Z i+ (s+1) ) Vet Ve 5+ DW)
iel’
Thus, & is not semistable with respect to L.
Second point. We can assume a; > 1. By Lemma 3.3.7 (point 3), & is a direct sum of line
bundles and

pr(Ox(Dy,)) = Vo >V, = pr(Ox(Dy,))

by Lemma 3.2.9. Therefore, & is not polystable with respect to L. O
We now assume that 0 < a1 < a2 = ... = a,. By Lemma 3.3.7 (point 3), & is polystable if

and only if Vo = W.

Proposition 3.3.20. Letr > 2 and (ay,...,a;) # (0,...,0) such that0 < a; < ag = ... = ay.

We denote by £ : N* — R the map defined by
p—1 . 1
j+r—2 ar(r—2)> <aT)]
l(p) = 1— 2 ) (=) —ay.
) ;( j >< i+t J\a) 7"

Then, the logarithmic tangent bundle Ix (—log(Dy, + Dy, )) is polystable with respect to L =
T Ops (V) @ Ox (1) if and only if

Q(v) := degp(Ox (Duy)) — degr(Ox (Dy,)) = 0.
Moreover, there is vo > 0 such that Q(v2) = 0 if and only if £(s) > 0.
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Proof. We will search a condition on aj, ag, r and s which ensures the existence of a positive
root on Q. We set a = a1 and b = a,.. We use the numbers W, and V;;, defined before Lemma
3.2.8. By Lemma 3.3.16, for any k£ € {0,...,s — 1}, we have

s—k—1
Wy, = Z adt ... qdr = as k1= Z v
dit...4dy j=0 dot..+dr=j
=s—k—1
:s k—1 <j+r_2>bjas_k_1_j'
7=0 J

We assume that r > 3. As Vo = V,, then for any k € {0,...,s — 1},

s—k
dr ki ;
Vo = Z abt . afr =N gtk Z b
di+...+dr_1 j=0 do+...4+dr—1=j
=s—k
s—k
_ <]+r—3)bj ok
=0~ 7
s—k—1

s—k (’I“—Q)b J+r—2\.; P
= + . , v .
‘ 2 j+1 < J ‘
The last equality is also true when r = 2. For the following, > 2. By definition of Q), one has
s—1
s+r s+r—1\ .
Q= < >Wk—V2k)V —( >V-
k=0 5
As W, — Voi, = a* F~1(s — k), we get

s—1
Q= Z(s—i—r ) . k_lﬁ(s—k;)uk—<8+2_1>ys

kES—FTl) +Z<Sji >k1£(k)ysk'

If1 <k <b(r—2),thenforanyj € {0,...,k— 1},

_ b(r—2) <1_b(r—2) :k—b(r—2) <0
j+1 - k k -

Therefore, /(k) < 0if 1 < k < b(r — 2). By using the fact that

Ok +1) = £(k) + <1_b(k7’+—12)> <k+;—2>bk

ak

we deduce that the sequence (£(k))>p(r—2) is strictly increasing. Hence,
« If {(s) <0, then for all v > 0, we have Q(v) < 0;
« If ¢(s) > 0, then Q has a unique positive root vs.
This completes the proof. O

Lemma 3.3.21. Let/ : N* — R be the map given in Proposition 3.3.20.
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ln(l + ag — al)
In(as) —In(ay)”
2. Ifr > 3, then the integer § € N satisfying £(6) < 0 and £(§ + 1) > 0 is in the set

{(r—=2)ar,(r—=2)a, +1,....[(r—1+V2r —3) a, + 1]}
where | x| is the floor of x € R.

1. Ifr =2, then {(s) > 0 if and only if s >

Proof. If r = 2, then

S
. § (479 J o (%) -1 _ ay Ay ° (1 + )
4 ai R aliar—al ai r— a1 )

Jj=0

In(1+a, —ay)
In(a,) —In(ay)’

We now show the second point. We set m = (r — 2)a,, @ = a1 and b = a,. In the proof
of Proposition 3.3.20, we have seen that /(p) < 0if 1 < p < m and the sequence (4(p))p>m is
strictly increasing. Hence, the integer § satisfies § > m. Let p > m, we have

m—1 ,. .
B j+r—2 m j+T—2 m b\’
=50 ) @ - S0 05 ()
=0p
o i4+r—2\ [(b)’
D IION 9
7=0
PL™ k41l fktmtr—2\ b\
kzo k+1—|—m< k+m ><a> '

-0 e ()=t ()

Therefore, ¢(s) > 0 if and only if s >

We search an integer p such that

We have

By formulas

for ¢ < n, we get

Hence,
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J=0 j=0
we deduce that
5 >1p‘1‘m k41 NS m (=2 (b
a e hd
Py kE+14+m ]:0]+1 J a
By using
”im k+1 >”‘imk+1_(p—m)(p—m+1)>(p—m)2
=0 k+14+4m — =0 D - 2p - 2p

and the fact that (p — m)? > 2bp if and only if p > (m + b) + \/b(2m + b) (because p > m),
we deduce that: if
po=|(m+8) +Vo2m+ )| +1

then f3,, satisfies (3.9) and then ¢(pg) > 0. This shows that § < py. O

3.4. APPLICATION ON TORIC LOG SMOOTH DEL PEZZO PAIRS

A pair (X, D) is a toric log smooth del Pezzo pairif X is a smooth toric surface and D an invariant
divisor of X such that —(Kx + D) is ample. The goal of this part is to study the stability of the
logarithmic tangent bundle 7x (— log D) with respect to —(Kx + D) when the pair (X, D) is
toric log del Pezzo.

3.4.1. Complete toric surfaces. We assume that N = M = Z? and the pairing (,-) :
M x N — Z is given by
<m, u> = a1b1 + asbsy

for m = (a1,a2) € M and u = (by,by) € N. Let X be a smooth complete fan in R? and X
the toric surface associated to 3. We denote by T the torus of X. There is a family of primitive
vectors {u; € N : 0 < i <n — 1} with n > 3 such that

« X ={0} U{Cone(u;): 0<i<n—1}U{Cone(uj,uiy1):0<i<mn-—1}

. det(ui,uiﬂ) =1
where u,, = ug. For any i € {0,...,n — 1}, we denote by D; the divisor corresponding to the
ray Cone(u;) and we set v; = det(u;—1, u;+1). We have

Uil — ViU + Uiy =0. (3.10)
By Lemma 2.1.31 and (2.7), we get
Di- D = —;
Dy-Di=1 ifkef{i—1,i+1} . (3.11)
Dy-D;=0 ifk¢{i—1,4,i+1}
Let L = ), a;D; be an invariant divisor of X. The polytope corresponding to L is given by

P={meZ*: (mu) > —a;foric{0,...,n—1}} (3.12)
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A ~
ij
________ -
'l
B >
y C

Figure 3.1: Geometry of the fan

and the facet of P corresponding to the vector u; is given by
P, ={meZ*: (m,u;) = —a;} N P. (3.13)

By the toric Kleiman Criterion (Theorem 2.1.34), L is ample if and only if for any ¢ € {0,...,n—

1},

L-D;=a;1+ai—1—va; > 0. (3.14)
Thus, by Proposition 2.1.36, vol(P;) = a;4+1 + a;—1 — via;.

Remark 3.4.1. If P is the polytope corresponding to an ample divisor, then the vertices of P are
exactly the intersections P; N Pj;1 for j € {0,...,n —1}.

3.4.2. Toric log smooth del Pezzo pairs. We use the notations of the previous section.
We describe here all toric log smooth del Pezzo pairs. Let X be a toric surface associated to a fan
3. By Corollary 2.1.17, we have

card(X(1)) = 2 + rk(Pic(X)).

Lemma 3.4.2. Let X be a complete smooth toric surface with Picard rank p and D a reduced
invariant divisor of X defined by D =) .. n D; where A C {0,...,n —1}.

1. Ifcard(A) > 3, then —(Kx + D) is not ample.

2. Ifp > 3 and card(A) € {1,2}, then —(Kx + D) is not ample.

Proof. Let A’ ={0,...,n — 1} \ A. By Theorem 2.1.14, we have

~(Kx+D)=>_ D
€A’

First point. Let P be the polytope corresponding to —(Kx + D). By (3.13), 0 € P, foralli € A.
Hence, by Remark 3.4.1, we deduce that —(Kx + D) is not ample.

Second point. For the proof of this point, we will use the geometry of the fan (Figure 3.1).
Let A = {—au; + fus : o, > 0}, B = {—au — fuz : o, > 0} and C = {au; —
Bug : o, > 0}. We start with the case card A = 1. We assume that D = D;. We have
—(Kx+D)-Dy=1—vyand —(Kx+D)-Dy =1—2. If —(Kx + D) is ample, then vy < 0
and y2 < 0. As v = det(uy,u3) and 9 = det(u,—1,u1), we deduce that u3 € B U C and
Un—1 € A. When n > 5, this is in contradiction with the fact that if us € BUC, then u,,—1 ¢ A.
Thus, we deduce that —(Kx + D) is not ample.

We now assume that card(A) = 2. After renumbering the indices, we can assume that
D = Dy + Djwithj € {2,...,n — 1}. We first assume that j € {3,...,n — 1}. Let P be the
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Figure 3.2: Fan of Hirzebruch surface

polytope of —(Kx + D). As0 € P; and 0 € P}, we deduce that 0 is a vertex of P. Hence, for
any k € {2,...,5 — 1}, vol(Py) = 0. By (3.14), we deduce that —(Kx + D) is not ample.

We now assume that D = D; + Dy. We have —(Kx + D) - D3 = 1 — 3 and —(Kx +
D)-Dyg=1—r. If —=(Kx + D) is ample, then v3 < 0 and vy < 0. As 3 = det(usg, u4) and
Yo = det(up—1,u1), we deduce that ug € C and u,,—; € A. If n > 6, this situation contradicts
the positioning order of vectors u;. If n = 5, we have uy € A and uy € C, this is not possible.
Therefore, we deduce that —(Kx + D) is not ample. O

If A # &, according to Lemma 3.4.2, it is enough to study the positivity of —(Kx + D) when
rk Pic(X) € {1,2} and card(A) € {1,2}. Let (ey, e2) be the standard basis of Z?. The rays of
the fan of P? are the half-line generated by u; = €1, us = ez and ug = —(e1 + e3).

Proposition 3.4.3. If X = P2, then the log smooth pair (X, D) is toric log del Pezzo if and only if
D € {Dy, D1, D2} U{Dgy + D1, Do + D2, D1 + D>}

Proof. We have the linear equivalence D ~y;, Do and Dy ~ji, Dg. By Theorem 2.1.14, we have
Kx = —(Do + Dy + D3),i.e —Kx ~in 3Dg. As Dy is ample, we deduce that —(Kx + D) is
not ample if and only if D = D; + Dy + Ds. t

We now assume that X = P (Op1 @ Op1(r)) with € N. The rays of the fan of X are the
half lines generated by the vectors u; = ey, ug = eg, ug = —e; + reg and ug = —ey (Figure
3.2). The numbers ~; are given by 79 = —r, 71 = 0, 2 = r and 3 = 0. By (3.14), the divisor
L = ag Dy + a1 D1 + ag D2 + a3 D3 is ample if and only if

ag+as >0, a1 +a3 >ras, a; +az > —rag

if and only if
ap+as >0 and a;+ag>ras. (3.15)

We have the linear equivalence of divisors
D1 ~lin D3 and D2 ~lin D() — TD3 . (3.16)

Proposition 3.4.4. Let X =P (Op1 @ Opi1(r)) withr € N. Then :
1. —Kx or —(Kx + Dy) are ample if and only ifr € {0, 1}.
2. If D € {D1, D3, Do+ D1, Do+ D3}, —(Kx + D) is ample if and only if r = 0.
3. If D € {D2, Dy + D1, Dy + D3}, —(Kx + D) is ample for any r € N.
4. If D € {Dy + D2, D1 + D3}, —(Kx + D) is not ample for anyr € N.

Proof. As —Kx = Dy + Dy + D3 + D3, by (3.16), we have
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—Kx ~iin 2Dg + (2 —r)D3 —(Kx + Do + D3) ~iin 2D3

—(KX + Do) ~1in Do + (2 — T’)Dg —(KX + Do + Dg) ~1in Do + (1 — T)Dg
—(Kx + Da) ~1iy Do +2D3 —(Kx + D2+ D3) ~jin Do + D3
—(Kx + D3) ~1in 2Dg + (1 — 1) D3 —(Kx + D1 + D3) ~yin 2Dg — D3

If a1 = ag = 0, the condition (3.15) becomes ag > 0 and a3 > 0. This allows us to conclude. [J

3.4.3. Stability with respect to the anti-canonical divisor of the pair. According to
Section 3.4.2, we study in this part the stability of the logarithmic tangent bundle 7x (— log D)
with respect to —(Kx + D) when —(Kx + D) is ample.

Proposition 3.4.5. Let X = IP? and Dy, D1, D5 be the irreducible invariant divisors of P? as in
Proposition 3.4.3.
1. If D € {Dy, D1, D3}, then Ix (— log D) is polystable but not stable with respect to Op2(1).
2. If D € {Dy+ D1, Do+ D3, D1+ D2}, then x (— log D) is unstable with respect to Op2(1).

Proof. The second point follows from Corollary 3.1.13 and the first point follows from Corollary
3.2.2. [

We now consider the case where X is a toric surface of Picard rank two. Let Dy, D1, Do, D3
be the irreducible invariant divisors of X as in Proposition 3.4.4. The divisors Dy, D1, D2, D3 of
X defined there are given in Section 2.2.2 by

Dy = Dy, D, = Dy, Dy = D, D3 = Dy,
where v; = e9 and wy = €;.

Proposition 3.4.6. Letr € {0,1} and X =P (Op1 & Op:1 (r)).
1 Ifr:OandD S {Dl :0<1 < 3}U{D0+D1,D0+D3}U{D2+D1,D2—I—Dg}, then
Ix (—log D) is polystable with respect to —(Kx + D).
2. Ifr =1, then Ix(—log Dy) is stable with respect to —(K x + D).

Proof. The first point follows from Remark 3.3.4. Let r = 1. We have — (K x + D) ~1in Do+ D3
and v = 1. The polynomial P; defined in Theorem 3.3.15is P; =2 — 2. As0 < v < 2, we
deduce that Jx (—log Dy) is stable with respect to —(Kx + Dy). O

Proposition 3.4.7. Letr € N* and X = P (Op1 @ Opi(r)). If D € {D3, Dy + Dy, Dy + D3},
then Tx (—log D) is not semistable with respect to —(Kx + D).

Proof. If D € {Dy + D1, Dy + D3}, the result follows from Proposition 3.3.11. By Theorem
3.3.13,if r > 2, then Jx (—log Ds) is not semistable with respect to any polarization. If r = 1,
the polynomial Py of Theorem 3.3.13 is given by Pp = 1 — 2. As —(Kx + D2) ~y, 2D3 + Dy
and v = 2, we deduce that 7x (— log D>) is not semistable with respect to —(Kx + D). [






TORIC SHEAVES, STABILITY AND FIBRATIONS

For an equivariant reflexive sheaf over a polarised toric variety, we study slope sta-
bility of its reflexive pullback along a toric fibration. We show that stability (resp. un-
stability) is preserved under such pullbacks for so-called adiabatic polarisations. In
the strictly semistable situation, under local freeness assumptions, we provide a nec-
essary and sufficient condition on the graded object to ensure stability of the pulled
back sheaf. As applications, we provide various stable perturbations of semistable
tangent sheaves, either by changing the polarisation, or by blowing-up a subvariety.

4.1. PULLBACKS OF REFLEXIVE SHEAVES ALONG TORIC FIBRATIONS

Let N and N’ be two lattices having respectively M and M’ for dual lattices. Let 3 be a complete
fan in Ng and ¥’ a complete fan in Ny. We denote by X (resp. X’) the toric variety associated
to the fan ¥ (resp. X') and T (resp. T") its torus. Given a surjective Z-linear map ¢ : N' — N
compatible with ¥’ and ¥, we denote by 7 : X’ — X the induced toric fibration (cf. Section

2.1.2). For an equivariant reflexive sheaf & on X we set & = (7*&)VV its reflexive pullback on
X'.

4.1.1. Pulling back sheaves on a fibration. We first describe part of the family of filtra-

tions of the pulled back sheaves.

Proposition 4.1.1. Let & be an equivariant reflexive sheaf on X given by the family of filtra-

tions (E, {E”(j)} pes1), jez)- Let (E, {E¥ (j)}plez,(l)’jez> be the family of filtrations of the
equivariant sheaf (7*&)"" . Then we have:

1. E=F. N
2. If¢m(p) = {0}, then E¢'(j) :{ g)} i§§§8 |

3. Ifdr(p)) = p € ©(1) and ¢(u,y) = by u,, then E¥ (j) = EP (Lﬂ)

Proof. For o € X, we define U, = Spm(C|[S,|) as an affine open subset of X and for ¢/ € ¥/,
we define U/, = Spm(C[S,-]) as an affine open subset of X’. The sheaf 7*&’ is defined by

™E =1 @p1p, Oxr (4.1)
where for any sheaf .# on X, 7~ 1.% is defined by
LU, n'7)= lm LU, 7).

U26(U’)
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We have I'(T', &) = E ®c C[M]. As w(T") = T, we deduce that
D(T', &) = (E ®c CIM)) ©cqpy CIM'] & B o C(M) .

Thus, E=FE.
Let p/ € ¥'(1) such that ¢r(p)

= {0}. By Lemma 2.1.21 we get 7(O(p’)) = T. Hence, by
the Orbit-Cone Correspondence, (U, ) =

T'. By (4.1), we deduce that
EX =T(U),&') = (E ®c C[M]) ®cpa C[Sy] = E @c C[S,] -
If m € Sy, then Eﬁ; = FE, otherwise Eﬁ; = {0}. This is equivalent to the assumption that
EP(j) = Eif j > 0and E°(j) = {0} if j < 0.
We now consider the case where ¢g(p’) = p and ¢(u,) = b, u,. By Lemma 2.1.21, we have
m(O(p")) = O(p) and then w(U},) = U,. Hence,
Ef = EP ®c[s,] C[Sy].

As ¢ : N' — N is surjective, there is an injective map 1) : M — M’ such that for any m € M
and u' € N', (m,d(u')) = (1p(m),u). Let e, € M such that Mg = Re, & Span(u,)* with
(ep,up) = 1 and let e,; € M’ such that M} = Re, @ Span(uy )t with (e, u,y) = 1. We set
My = Span(u,)* N M’. There is m, € My such that
b(ep) = bpey +my .

For any m/ € M/, there is a € Z and mg € My such that m’ = ae,y + my. Let (a’,7) € Z* such
that a = a’b, + r with 0 < r < b,, we have

m' =rey +d'(bpey +mp) + (mg — a'my) =rey +9(d'e,) + (mo —a'my,) .
Thus, M' = A + (M) + My where A = {key : 0 < k < b, — 1}. Therefore, Sy =
A+ (S,) + My and

ClSy] = €D C[S,)@c (x™ - C[Mo))
m/'eA

where for m € S, and mg € My, x™ ® (™" - x™0) = ™ Felm)tmo Thys,

B = @ B ec (™" - C[Mo))
m'’eA

=P | X Elm )y
m’’eA \meM,moeMy
As (m,u,) € Z, for any (m”,mg) € A x My,

(m,u,) = W), uy) = (¥(m) + mo, uy) - leuﬂ/}(m) +mo,up’>J )
» Up b, b, b,

Epl ~ Z Ep (\‘<m” + w(m) + m()aup/>J> ® Xm//+w(m)+m0

bp
meM, mo€ My,
m'’ €A

()

m/eM’

that is E¥' (j) = EF (V—pJ) O

Thus,

2

I
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Notation 4.1.2. Let F' be a vector subspace of E. We denote by <F, {FF(j )}) the family of
filtrations of (7*&)V".

Corollary 4.1.3. Let F' be a vector subspace of E. Then the family of filtrations (F, {F7 (])})
satisfies F¥' (j) = F 0 EP'(5) for all rays p' such that ¢r(p') € {0} US(1).

Proof. 1f ¢r(p’) = {0}, we have ﬁp/(j) = { {0} ifj <0 ; SO ﬁp/(j) = FﬂEp/(j).

F o ifj>0
If or(p’) = p € B(1) and ¢(u,y) = by u,, we have

= ((£])-rom (¢]) o

4.1.2. Slopes of the pulled back sheaves. We now assume that 7 : X’ — X isa
toric fibration between two complete and QQ-factorial toric varieties. We set n = dim X and
r = dim X’ — dim X. Let L be an ample divisor on X and L’ a w-ample divisor on X’. For
€ € Q¢ small enough, L. = 7*L + L’ € Pic(X') ®z Q defines an ample Q-divisor on X'. In
this section, we relate the slopes of sheaves on X with respect to L to the slopes of their pullbacks
on X' with respect to L. All intersection products are made in the Chow rings A®*(X)g and
A*(X")q (cf. Section 2.1.4).

O]

Proposition 4.1.4. Let & be an equivariant reflexive sheaf on X with family of filtrations given
by (E, {E(j)}) and & = (7*&)VV. Then, there is C > 0 such that

r41 n—2
N r € n+r—1
H1(E) = C g () — = @@k}:():( : )

Z Lp(éa) 8n_k_2(7r*Dp) . (W*L)k . (L/)n+r—k—1 (4‘2)
peEX(1)

and for any vector subspace F' of E,
, e T mtr—1
pr.(6p) = pr.(7°6r)"") — KF kz—o < k >><

Z (Lp’(glli‘) - Lp,((ﬂ_*@(oF)V\/)) 5n7k72Dpl . (W*L)k . (L/)n+rfk71 (4‘3)
pEA

where A = {p' € ¥'(1) : or(p’) ¢ X(0) UX(1)} and 1,(&) given in (2.19).
Remark 4.1.5. The set A indexes the invariant divisors of X’ contracted by .
Proof. First, we have
L=t = N (1Y k Nntr—k—1
- kzzo ( N >(7TL)-(€L) :

Let D be a divisor on X. By the Projection formula (2.6), for any k& € {0,...,n+7r — 1},

T ((TI'*D) . (ﬂ_*L)k . (L/)n+rfk71> -D. Lk . F*((L/)nﬁ’T*kfl) c A()(X)
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Hence,
deg ((W*D) (7 L)k (L’)W—’f—l) — deg (D Ik m((L’)”*?"—’“—l)) .

Ifk >n,then D- LK. 7, ((L')"*"=%=1) = 0 € Ag(X). Hence,
(W*D> . (ﬂ'*L)k . (L/)n-‘r’r‘—k—l —0.

Since L' is relatively ample, if V' C X’ is an irreducible subvariety of positive dimension that
maps to a point in X, then (L)@™V . V' > 0 (cf. [26, Corollay 1.7.9]). So in the case where
k =n — 1, one has

(m*D) - (x*L)" 1 (L) > 0.

Asm((L)") € An(X), we deduce that there is a constant C' > 0 such that 7, ((L')") = C - [X].
Thus,
(7*D) - (x*L)" ' - (L')"=C (D - L™ ') = C deg(D) .

Therefore, the degree of 7* D with respect to L. is given by
deg; (7"D) =Ce" deg; (D)

Sn+r—1
+ €r+l Z < iy )6n_k_2(7T*D) . (W*L)k . (L/)n-H“—k—l )
k=0

As pp (&) = c1(&') - L1 = 7% (¢1(&)) - LPT"~1, according to Equations (2.19) and (2.20),
we get Formula (4.2).

Let now F' be a vector subspace of E. We recall that &}. is the saturated subsheaf of &’
associated to F' (cf. Notation 2.3.18). We wish to compare the slopes of &}, and of (7*&r)"".

We denote by (F, {F¥ (])}) the family of filtrations of (7*&%)YV. By Corollary 4.1.3, for any

p' € ¥'(1) such that ¢r(p') € {0} UX(1), F¥'(j) = E (j) N F. Therefore, according to (2.19),
one has

cr(6p) = el((TER)Y) = D (4 (EF) = 1 (7 ER)YY)) Dy . (4.4)
pEA

Let p' € A, thendim7(D,y) <n—2.Fork € {0,...,n+7r —1},
Dy - (L) R € Ap(|Dy| O |(L))™ TR

and

7o (Dy - (L) 771) € Ay (=(IDy | A ()71
As dim 7 (|Dy| N [(L))"T7=*=1|) < n — 2, we deduce that 7, (D, - (L')""=+1) = 0if k >

n — 1. Thus,
k —k—1
(7* L) - (eL/)™*" Dy =0

if K > n — 1. Therefore, for any p’ € A,
n—2 n+r—1
degLs (Dp/) — €T+1 Z ( )EnkQDpl . (ﬂ_*L)k . (Ll)n+r7k71.
k=0 k

Using (4.4) and (2.20), we get Formula (4.3). O
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4.1.3. Stability of the pulled back sheaf along a fibration. We now give the main
results of this chapter about stability of pulled back sheaves along fibrations. We keep the no-
tations of the previous section. Recall that to check slope stability of &”, by Proposition 2.3.16
and Lemma 2.3.17, it is enough to compare slopes with subsheaves of the form &7.. According to
Formulas (4.2) and (4.3), for any vector subspace F' of F, we have

e (&) = pr.(Ep) = (p.(&) — pr. (7 Ep)*)) + (ne. (7 Ep)") — pr.(6p))  (45)
where
{ pr (7" Er)"Y) = pr. (6f) = o(e")
pr (&) = pr. (7 Ep) ") = C(pL(&) — pL(ép))e” + o(e")
As &%, is the saturation of (7*&r)YY, we have ur_(7*&p)YY) < pr. (Ep).

Theorem 4.1.6. Let & be a T-equivariant stable reflexive sheaf on (X, L). Then there isey > 0
such that for all £ €]0,e0[NQ, the reflexive pullback &' = (7*&)V" is stable on (X', L¢).

Proof. For any vector subspace F of E, we have ur, (&) — pr(&r) > 0. We set
ap = min{ur (&) — pr(ér) : {0} S F C E}.

By Lemma 2.3.19, one has ag > 0. As the set {ur (&) — pr.(67) : {0} € F C E} is finite, we
deduce that the number of vector spaces F' to consider is finite. By Equation (4.5), we get

pr. (&) — pr.(6g) > Cage” + o(e") .

Thus, there is €9 > 0, such that for any € €]0,9[NQ, pur,_(6”") — . (6F) > 0. Hence, we deduce
that &” is stable with respect to Lv.. O

Proposition 4.1.7. Let & be a T-equivariant unstable reflexive sheaf on (X, L). Then there is
o > 0 such that for alle €]0,e0[NQ), the reflexive pullback &' = (7*&)VV is unstable on (X', L.).

Proof. There is a vector subspace F' of E with 0 < dim F' < dim FE such that p7, (&) — ur(&r) <
0. By (4.5), there is 9 > 0, such that for any ¢ €]0,£9[NQ, 1. (&") — pr.(E5) < 0. Hence, &”
is unstable with respect to L.. O

Remark 4.1.8. Theorem 4.1.6 and Proposition 4.1.7 also follow from the openness property of
stability [10, Theorem 3.3].

Our main result deals with the more delicate strictly semistable situation. Let & be a strictly
semistable torsion-free sheaf on (X, L). It then admits a Jordan-Holder filtration

0=6C&EC...CE=E

by slope semistable coherent subsheaves with stable quotients of the same slope as & [16]. The
reflexive pullbacks of the &;’s form natural candidates to test for stability of the reflexive pullback
of & on (X', L¢). In fact, we will see shortly that if & and

/-1
Gr(&6) = D &i1/&
=1

are locally free, it is actually enough to compare slopes with these sheaves. In order to state our
result, we will introduce some notations. Let € be the set of equivariant saturated subsheaves of
& arising in a Jordan-Holder filtration for &. For two coherent sheaves .%7 and .%5 on X', we will
write 1o(F1) < po(F2) (resp. po(F1) < po(F2) or puo(F#1) = po(F2)) when the coefficient
of the smallest exponent in the expansion in € of pr,_(%2) — pur_ (%) is strictly positive (resp.
greater or equal to zero or equal to zero). We say that a locally free semistable sheaf is called
sufficiently smooth if its graded object is locally free.
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Theorem 4.1.9. Let & be a T'-equivariant locally free and sufficiently smooth strictly semistable
sheaf on (X, L). Then there is £y > 0 such that for all ¢ €]0,£9[NQ, the reflexive pullback &' :=
(m*&)VY on (X', L.) is:

1. stable iff for all F € €, ug(7*F) < uo(&’),

2. strictly semistable iff for all # € €, uo(7*F) < po(&’) with at least one equality,

3. unstable iff there is one F € € with po(7*F) > uo(&”).

Proof. Let§ = {F C E: ur(&r) < ur(&)}. By Equation (4.5), for any F' € §, thereisep > 0
such that for any ¢ €]0; er[NQ, . (EF) < pr.(&'). We set

g1 =min{ep: F € §}.

As by Lemma 2.3.19 it suffices to compare slopes for a finite set of vector subspaces, we deduce
that e; > 0. Thus, the subsheaves @@}’; for F' € § will never destabilize & for € < ;.

We then consider F' ¢ §, that is the case where puf,(67) = pu(&). We then have by definition
&p € €. As & islocally free and Gry, (&) is sufficiently smooth, we deduce that 7* & is saturated
in &'. Hence, (7*&p)VY = &} and by (4.4),

pr. (7°Er)"Y) = pr.(6p) = 0. (4.6)

Therefore, for any F' C F such that &7 € €,

pr (&) — pr(Ep) = pr (&) — pr. (7" Er)"Y).

But then the sign of pu,_(8") — pr (&) is given by the sign of 1ig(&”) — po(&}). Again, as we
only need to test for a finite number of subspaces F' C F, we obtain the result, witheg < 7. [

4.1.4. The case of locally trivial fibrations. We assume here that 7 : X’ — X is
a locally trivial fibration. We use the notations of Section 2.1.3. Let & be an equivariant re-
flexive sheaf on X given by the family of filtrations (E,{E*(j)}). As for any p/ € ¥'(1),
or(p') € £(0) U X(1), by Corollary 4.1.3 one has (7*&r)¥Y = &} for any vector subspace
F of E. According to (4.5), we get

pr (&) = pr.(6p) = pr. (&) — pr. (7" Ep)"Y). (4.7)

Therefore, in the proof of Theorem 4.1.9, identity (4.6) holds for any vector subspace F' of E.
Hence, in the case of a locally trivial fibration, the assumptions on & and Gry, (&) to be locally free
in Theorem 4.1.9 are not necessary. Let’s now consider a simple example to illustrate our results.
We will assume that X’ = X, so that the only perturbation we consider is in the polarisation
from L to L.

Example 4.1.10. Let (e1, e3) be a basis of 72 We set uj = eq, us = e9, uz = ey — 2e; and
ug = —ey. Let X be the singular toric surface associated to the fan

Y ={0} U{Cone(u;) : 1 <i <4} U{Cone(us,ujt1):1<i<4}.

We denote by D; the divisor corresponding to the ray Cone(u;). As ¥ is simplicial, the divisors
D; are (Q-Cartier. There are linear equivalences D ~1i, 2D3 and Dy ~1i, Dy — D3. According
to Lemma 2.1.31, we have

1 1 1
Dy-Dy=5 Dsy-Dy=j D3-D3y=0 Dy-Di=1 Di-Dy=.



Chapter 4. Toric sheaves, stability and fibrations 71

o U
\ Uy
— e—

Figure 4.1: Fan of the singular surface X

Hence the Q-divisor aD3 4+ bDy is ample if and only if a,b > 0. As —Kx = Dy + Dy + D3 +
Dy ~yin 2(D3 + Dy), we deduce that X is a del Pezzo surface. Let & be the tangent sheaf of X
(see Example 2.3.11 for its family of filtrations). If L is an ample Q-divisor, to check the stability
of & with respect to L, it suffices to compare p (&) with pr () for F' € {F}, F, F3} where
Fy = Span(uq), F» = Span(usg) and F3 = Span(ug). According to Example 2.3.10, we have

éapl =~ ﬁx(Dl) , 5}72 = ﬁx(DQ + D4) and 5}73 = ﬁx(Dg).
We assume that L = — K x. We have
L-Di=2 L-Dy=1 L-D3=1 L-Dy=2

and
pr(€) =3  pr(ém) =2  p(m)=3  p(ér)=1.

Hence & is strictly semistable with respect to — K x.
We now consider L. = L + £(aD3 + bD4). From our criterion, to check stability of & with
respect to L., it is enough to compare slopes of & and &f,. We have
b b
L. Dy =2+0be, L;-D2:1+%, L;-D3:1+§, L;-D4:2+(a+2)5.
Thus, i, (&) =34 (b+ §) &, and pg, (6p,) =3+ (a + %) e. We deduce that & is stable (resp.
strictly semistable) with respect to L. if and only if b — a > 0 (resp. b — a = 0). O

4.2. BLow-uUPs

In this section we specialize to equivariant blow-ups along smooth centers. Let X be a smooth
toric variety of dimension n associated to a smooth fan 3. We denote by 7 : X’ — X the
blowup of X along Z = V(7) with 7 € ¥ such that dim7 > 2 and we set ¥/ = ¥*(7). As
before, & stands for an equivariant reflexive sheaf on X and &’ denotes its reflexive pullback
along .

4.2.1. Slope of the reflexive pullback along a blowup. In this section, we show Propo-
sition 4.2.1 which is the key to the results stated in this part. Note that the proof doesn’t require
any toric assumption.

Proposition 4.2.1. Let X be a smooth projective variety and Z C X a smooth irreducible subva-
riety of dimension £ with1 < ¢ < dim(X) —2. We denote by : X' — X the blowup of X along
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Z and Dy the exceptional divisor of . Let L be an ample divisor of X and let L. = n*L — Dy be
an ample Q-divisor of X' fore € Q¢ small. Then for any divisor D of X,

-1
=D - L?_l —D.["1_ <Z’ 1>En—£D . Lﬁ—l 7+ O(En—é) (4.8)
and
-1
Dy- L' = <” ) >e"—€—1z CLE 4 o(e" ). (4.9)

Proof. We denote by .4/ the normal bundle of Z. We have Dy = P(./"). For a divisor D of X,
one has

n—1

-1

o DL =) (n " >7T*D (n* L) - (—eDo)" 1 F
k=0

n—2
-1
=7*D . (W*L)n_l + kZ_O <n k‘ >7r*D . (W*L)k . (—sDO)”_l_k .

Therefore, by the projection formula, we get

n—2
-1
7T*D . L?—l =D. Ln—l + § : <n B >(_€)n—1—k2D . Lk; . W*(Dg_l_k) '
k=0

Ifn= | Do according to [7, Example 3.3.4], one has

> (0¥ nu(Dg) = s() N (2]

k>1

where s(.#") is the total Segre class of 4. As s;(A#) N [Z] € Ar_;(Z) and n.(D5"1) €
Ag+1(Z), we deduce that

()" P (Dg) = sea () 012
forany k € {0,...,n —2}. As so(AN) N [Z] = [Z], we get

n—1

w*D-L?_lzD-L”_l—Q .

>€’n—€D . Lf—l A
n—1\ . _,_
Y ("D B (s 0 12)
which gives the first formula. O

Corollary 4.2.2. With the same data as Proposition 4.2.1, if & is a reflexive sheaf on X, then

n—1

nee (")) = pu(&) ~ (e - 1>uLz<éiz>en—f +0(E ).
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4.2.2. Reflexive pullback along an equivariant blow-up. In this section we give the
family of filtrations of the reflexive pullback along an equivariant blowup. This will serve in
relating the Chern classes, and also in obtaining explicit examples. Let (u, . .., u,) be a basis of
N such that 7 = Cone(uy,...,us) with 2 < s < nand {Cone(A) : A C {uq,...,u,}} C X.
We set p; = Cone(u;) fori € {1,...,s} and pg = Cone(u,) where u; = uj + ... + us. We
denote by (e, ..., e,) the dual basis of (uq, ..., uy).

Remark 4.2.3. The variety V() is the center of the blowup 7 : X’ — X and D,, is the
exceptional divisor of 7.

Propos1t10n 4.2.4. Let & be an equivariant reflexive sheaf on X given by the family of filtrations

(E,{E*(j)}). Let (E {E* () ()} pesr 1), jeZ) be the family of filtrations of &' = (7*&)VV. Then
we have :

L ifp € (1) C T'(1), EP(j) = E*(j);

2. if p = po,

Ef()= Y EP(i)N...NE"(i) .

Proof. We recall that the Z-linear map ¢ = Idy is compatible with ¥ and . If p € (1) C
¥'(1), we have ¢(u,) = u,. By Proposition 4.1.1 we get EF(j) = E’(j).

We now assume that p = Cone(u,). The minimal cone of X which contains ¢g(p) is 7.
Hence by Lemma 2.1.21, we deduce that 7 (O(p)) = O(7). Thus, © (U;) = TUO(7). As U, is the
minimal 7-invariant open subset of X which contains 7 (U}), we deduce that T(U}, 7~'&) =
['(U;, &). By (4.1) we get

Er = L(U,,&") = F(U,/nﬂ_lg) ey (vy) Ox'(U) = ET Qg .y Ox(U})
where Ox:(U,) = C[S,], Ox(U;) = C[S;] and E7 defined in Notation 2.3.9. We have
7V = Cone(ey, ..., es, Fesi1,...,Een) .

A point m = mye; + ... + myey, liesin p¥ if and only if my + ... + mg > 0, i.e mg >
—(m1 4+ ...+ ms_1). Hence,

p” = Cone(£(e; —ey),..., *(es_1 —€s),es,£esi1,...,%en)

and
pt = Cone(£(e; —ey), ..., £(en1 — €s), £esi1,...,xe,) .

Therefore, S, = p* + S, and C[S,] = C[S;] ®c C[M(p)]. Thus,
B = B @, (C[S)] ©c CM(p)]) = B @c C[M(p)]

Hence,

Yo Eex" = > (ZE;@@X’”)@

m/'eM (p) m/eM(p) \meM
m/'eM(p) \meM

=2 | 2 Ehw|ex”

meM \m/eM(p)
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Therefore, for any m € M,

= >

m/eM (p)
As forany m’ € M(p), (m —m',u1) +...+(m —m',us) = (m —m',u;) = (m, u,), by using
the fact that E7 . = EP*((m — m/,u1)) N...N E**({m —m’,u,)) and Efj, = EP((m, u,)),
we get the result. O

The following example shows that the reflexive pullback of & might not be saturated in &”’
in general. Hence, our hypotheses on & being sufficiently smooth, or on pulled back subsheaves
being saturated, are necessary in the statements of our results.

Example 4.2.5. Let (u1,uz) be a basis of Z2 and ¥ = {Cone(A) : A C {uj,uz}}. Let & be an
equivariant reflexive sheaf on X = C? given by the family of filtrations

0 #5<0 (0} itj <0
EF(j)=< E; if1<j<2 and E™(j)=<{ FEy ifj=1
E ifj>3 E  ifj>2

where F; = Span(uy), F2 = Span(ug) and E = Span(u1, ug2). We denote by 7 : X’ — X the
blowup along V' (Cone(u1,us2)) (that is the blowup at the origin). We set F' = Span(u; + ug)
and & the subsheaf of & given by F*(j) = EP(j) N F. According to Proposition 4.2.4,

{0} ifj <2 o
~ ~ <
Em(j)={ B, ifj=3 and F”O(j):{ }0} ?-;;‘
E ifj>4 J=
As Fro(4) £ Ero(4) N F, we deduce that (7* &)Y is not saturated in (7*&)VV. O
Let D =" pes(l apr be a Cartier divisor of X. According to Proposition 2.1.24, we have

Z a,D, + Z a,Dy . (4.10)

peZ peT(l
As 1 (&) = 7*c1(&), we get
() == > 1,(E)Dy— > 1,(&)Dy . (4.11)
peS(1) peT(1)

In the following Lemma we give the expression of ¢; (&%) with respect to ¢; ().

Lemma 4.2.6. Let F be a vector subspace of E. The first Chern class of &%, is given by

c1(6p) = mc1(6p) + Y d;(F) D
JEL

where d;(F') = dim(F' N EP0(5)) — dim Fro(§).

Proof. By Corollary 4.13, if p € (1), we have F N E*(j) = F*(5). Thus, for any p € %(1),
Lp(&F) = 1,(EF). We now consider the case p = py. We have

NGO (dlm F N EP()) — dim(F N EP(j — 1)))
JEZ
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and

oo (E7) = o (7 E7) = 3 j (dim(F 1 B () — dim F° ()

JEZ
-3 (dim(F A EP(j — 1)) — dim FPo(j — 1))
JEZ
= Jdi(F) =) jd; 1(F)
JEZ JEZ

There are p, ¢ € Z with p < ¢ such that d;(F) = 0if j < pand d;(F) = 0if j > ¢. Hence,

q g+1
Lo (E8) = Lo (T ER) =D jds(F) = Y jdj1(F) ==Y d;(F)
Jj=p Jj=p+1 JEZL
and ¢1(6}) = e1 () + (e 45(F)) Do O

Corollary 4.2.7. Let F' be a vector subspace of E. The sheaf (7*&r)VY is saturated in &' if and
only if (m*&p)VY = &; in that case, c1(Ef) = 7 c1(Er) and dj(F) = 0 for all j € Z.

Proof. The proof follows from Lemma 2.3.17. O

For a semistable sheaf &, we recall that € is the set of equivariant saturated subsheaves of &
arising in a Jordan-Holder filtration for & (cf. Section 4.1.3). By Corollary 4.2.2 and Lemma 4.2.6,
we get:

Corollary 4.2.8. Let (X, L) be a smooth polarized toric variety. Let w : X' — X be the blowup
along a T-invariant irreducible subvariety Z C X with 1 < dim(Z) < dim(X) — 2 and let
L. = "L — €k for E the exceptional divisor of m and ¢ € Qs small. Let & be a T-equivariant
reflexive sheaf that is strictly semistable on (X, L). Assume that for all 7 € &, (7*.7)VV is
saturated in &' = (7*&)VV and that

1Ly, (Ez) < pr,(F|z)-

Then there is £g > 0 such that for all e €]0,e0[NQ, the pullback &' is stable on (X', L.).

4.2.3. Blowup in several points. In this section, we prove the following theorem where &
is the set of equivariant saturated subsheaves of & arising in a Jordan-Holder filtration of &.

Theorem 4.2.9. Let (X, L) be a smooth polarized toric variety and S a set of invariant points
under the torus action of X. Let m : X' — X be the blowup along S and let L. = n*L — €FE for
E the exceptional divisor of m and € € Qs small. Let & be a T-equivariant reflexive sheaf that
is strictly semistable on (X, L). Then there isco > 0 such that for all ¢ €]0,e0[NQ, the reflexive
pullback &' := (7*&)VY on (X', L.) is

1. strictly semistable iff for any subsheaf F € €, (n*.F )"V is saturated in &',

2. unstable otherwise.

Proof. For any p € S there is 0 € ¥(n) such that p = ~,. We set Sy, = {0 € X(n) : 7, € S}.
According to Section 2.1.3, the fan X’ of X" is given by

Y={ceT:o0¢Su}tu ] Ti0)

ogE€Sy
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We denote by D,, C X' the exceptional divisor of 7 over p € S; we have E =

pES
Let 0 = Cone(ul, ... ,Up) € Sy and p = 7,. We denote by (eq,...,e,) the dual basis of
(u,...,uy) and we set p; = Cone(u;). We compute the intersection product on X'. We have

[D,] - [Dp) = 0if p € ¥'(1) \ (o(1) U{Cone(us + ...+ uy)}). Fori € {1,...,n}, if we set
m = —e;, by Lemma 2.1.31 we get

[Dyp] - [Dp] = [Dp + div(x™)] - [Dp] = —[Dp,] - [Dpl:
therefore
Dy = (—1)~!
D, - Dyt = (=1)" ifpeo(l)
D,-Dp~t=0 if p e X'(1)\ (o(1) U {Cone(u,)})

IfL = Zpez(l) a,D,, by (4.10), we get

Z ap,D, + Z Z ap,D-, ;

peX(1) 0€Sy pea(l)

hence, forany p € S, [1*L] - [D,] = 0 € A,,_o(X"). Thus,

L?_l _ (W*L)n_l + (_1)n—1€n—1 ZDZ_I'
peS

For any p € S, we have deg;_(D,) = "L If p € £(1), then

degy, (Dy) = degr(D,) — Z el

0€Sx, peo(l)

Thus,

rk(6Npur (6 == > 1p(&)degr (D) — > > 1,(&)degy (D)

peEX(1) o€Sy; pea(1)
=— Z o(&) degr (D Z Z Lp(&
peEX(1) oE€Sy pea(l)
+ Z (&) Z gnt
peEX(1) oE€Sy, pEa(l)
— k(&) (6)

Hence, puy_(&8") = ur(&). If F is a vector subspace of F, the same computation gives

pr. (7" 6p)") = pr(8r).

According to Lemma 4.2.6, for any vector subspace F' of E one has
pr (&) = pr.(6p) = pr(&) — po(ér é"F };% (dim(F N E#7(4)) — dim F»(j))
J

where p,, is the ray corresponding to the divisor D,,. Hence, Theorem 4.2.9 follows from Corollary
4.2.7. O
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4.2.4. Blowup along a curve. In this section, we assume that n = dim(X) > 3 and that
7 € X(n — 1) is the intersection of two n-dimensional cones o and o’. Hence we consider the
blowup 7 : X’ — X along the curve Z = V(7). With the results of Section 4.2.1, we can prove
the following theorem.

Theorem 4.2.10. Let (X, L) be a smooth polarised toric variety. Let m : X' — X be the blow-
up along a T-invariant irreducible curve Z C X and let L. = "L — €E for E the exceptional
divisor of m and € € Q~¢ small. Let & be a T-equivariant reflexive sheaf that is strictly semistable
on (X, L). Then there isco > 0 such that for all ¢ €]0,e0[NQ, the pullback &' := (7*&)VV on
(X', Le) is

1. stable iff for all F € €, (7*.F)VV is saturated in &' and

Cl(é?> A < 01(;3;)~ 27.
rk & k.7
2. semistable iff for all F € €, (7*F)VV is saturated in &' and
Cl(é?> A < Cl(;g;)~ 27.
k& — 1kZF

3. unstable otherwise.

Proof. Let & be a strictly semistable sheaf on (X, L). According to Corollary 4.2.2 one has

En—l

pr.(&) = pr() - (&)

(&) - V(r)
and by (4.9) we have
deg; (Do) = (n—1)e" 2L V() — (=1)"e""'Df .

By Lemma 4.2.6, for any vector subspace F' of F, we have

pr.(6") = pr.(6p) = ur(6) — pr(6p) + " (

€n72

kg (= DL VE) = (e DY S di(F). (412

JEZ
Let&p € Efor F' C E. Weset C =} . d;(F). If (7*&p)VY is not saturated in &”, by Corollary
4.2.7, we have C' > 0; hence there is e > 0 such that for any ¢ €]0, ep[NQ,
ca(ép) Vir) alé) V(r) n (-1)"C x D < (n—1)C x L-V(r)
rk(&F) k(&) rk(&r) rk(&r) '

If (7*&p)VY is saturated in &”, then for 0 < e < 1, pup (') — pr. (Ef) > 0 (resp. > 0) if and
only if

c1(6p) - V(r) _alé) V(r)
rk(&F) - k(&) > 0 (resp. > 0) .

With these two observations about (7*&r)V" for & € €, we deduce the result. O

We turn now to an explicit formula that helps applying Theorem 4.2.10 on concrete examples.
For a divisor D of X, we can compute D - V(7) by using the fact that 7 = o N ¢’. Let Xy =
o(1) Uo’(1). There is a family of numbers a, € Z such that

Zozpup:0 and o, =1ifpe g\ 7(1).
PEXo
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We assume that 0 = Cone(uy, ..., uy), o/ = Cone(uy, ..., up—1,Uns+1) and Lo = {Cone(u;) :
1 <i<n+1} Fori e {l,...,n+ 1}, we set p; = Cone(u;) and a; = ;. We denote by
(e1,...,en) the dual basis of (ug,...,u,). Fori € {1,...,n — 1}, we have

Dy, ~in Dp, + div(x ) = s Dp,yy + >, (=i up)D, .
pES(1\Zo

By Proposition 2.1.29, we get

. _J oo, ifpe X
Dy V(T)_{o if pe (1) \ g

Hence,

(4.13)

4.2.5. Examples of (de)stabilizing blow-ups along curves. We use the notation of
Section 2.2.2. Let X = Xy, be a smooth toric variety of dimension n given by

X =P (O & On(1))

with 7 > 2 such that » + 1 = n. We denote by pr : X — P! the projection map. Let & be
the tangent sheaf of X. The family of filtrations of & is given in Example 2.3.11. According to
[14, Theorem 1.4], the sheaf & is stable with respect to L = pr* Op1 (v) ® Ox (1) if and only if
0<v<yywithyy = TJ%I

We now assume that L = pr* Opi1(1/(r + 1)) ® Ox(1). The sheaf & is strictly semistable
with respect to L. The subsheaf & with F' = Span(vy, . .., v, ) is the unique saturated subsheaf

of & such that pur,(6F) = pr(&). The family of filtrations of & is given by

0 ifj < —1
F?(j) =< Span(u,) ifj=—1  if p= Cone(v;)

F ifj>—1

and by
) 0 ifj<0 .
Pl — = ,
F*(j) { Foifj >0 if p = Cone(wy) .

Hence,

(&) (8F) 1 rJ%l if p = Cone(v;)
r+1 T if p = Cone(wy)

=1
r+1
Given 7 € 3(n — 1), in the following examples, we study the stability of the reflexive pull-

back 6" = (1*&)"" on X" = Bly(;)(X) with respect to small perturbations of 7*L. In these
examples, (7*&p)V"V is saturated in &”.

Example 4.2.11. Let 7 = Cone(wy, v1,...,v,—1). We have
7 = Cone(wy, v1,...,0.—1, vy) N Cone(wg, v1,...,Vr—1, Vg) .
AsO-wo+ vy + vy + ...+ v, =0, by Equation (4.13) we get

Cl(éap)-V(T) _Cl(éa)-V(T) :T—I—l B
T r+1 r

1

So there is g9 > 0 such that for any € €]0, £9[NQ, &” is stable with respect to L.. O
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Example 4.2.12. Let 7 = Cone(vg, v1,...,v,—1). We have
7 = Cone(vg, v1,...,0r—1, wp) N Cone(vg, v1,...,Vp_1, W1)
As wp +wy +v9+v1 + ...+ v.—1 =0, by Equation (4.13) we get
ca(ér)-V(r) (&) -V(r) -1

r r—+1 Cor4+1°

Hence, there is £9 > 0 such that for any ¢ €]0,0[NQ, &” is unstable with respect to L..






ON THE SINGULAR LOCUS OF TORIC SHEAVES

We study the singular locus of an equivariant reflexive sheaf over a smooth toric
variety. This locus is a finite union of orbit closures of codimension at least three. In
the other direction, we show that it is possible to prescribe singularities on a sheaf.

5.1. PRESCRIBING SINGULARITIES

5.1.1. Dimension of the singular locus. Let X be a smooth toric variety with torus
T associated to a fan ¥ and & an equivariant reflexive sheaf on X given by the family of fil-
trations (E,{E”(j)}). We recall that N is the lattice of one-parameter subgroups of 7" and
M = Homz(N,Z).

Notation 5.1.1. We denote by:

(& )free the set of cones o € 3 such that & is locally free on U,
Z(éﬁ))sing =X \ E(éo)free,

X (&) free the smooth locus of &,

X (&)sing = X \ X(&)free the singular locus of &'.

—_

Ll

From general theory, the singular locus X (& )sing is a Zariski closed subset of X of codimen-
sion at least 3 [24, Corollary 5.5.20]. It is not difficult to see that ¥(&)frec and X(&)sing satisfy
the following result.

Lemma 5.1.2. Let & be an equivariant reflexive sheaf on a smooth toric variety X. Then:
1. The set (& )free is a subfan of 3.
2. If T € ¥(&)sing is a face of 0 € X, then 0 € X(& )sing.
3. ThereareTy,..., T € X, such that

X(&)sig= |J Olo)=JV(m).
aGZ(é”)Smg =1
Moreover, min {dim(c) : 0 € X(&)sing} > 3.

Proof. Let 0 € X(&)free. By Klyachko’s compatibility condition (Proposition 2.3.12) there is a
decomposition E = @ .4 Eq with A C M/M (o) a multiset of size rk(&’) such that for any

p € a(l),
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Let 7 be a face of o and let pr : M /M (o) — M /M (7) be the projection map. We denote by
B = {pr(«a) : a € A} a multiset of size rk(&’) and for any o € A, we set E;r(a) = E,. As for
any p € 7(1), we have (pr(«),u,) = (o, u,), we deduce that: for any p € 7(1),

Eri)= P Ej.

66B7 <ﬁ7u}3>§l

Thus 7 € (&) free, and then X(&)ree is a subfan of X.

Let 7 € 3(&)sing and o € ¥ a cone containing 7. If 0 € X(&)frce, by the first point we have
T € X(&)free- Thus, if T & X(&)free then o & 3(&E ) free-

By [24, Corollary 5.5.20], we have dim X (&)sing < dim X — 3. As

X(éa)sing = U O(o),

JEZ((?)Sng

we deduce that for any 0 € (& )sing, dimO(0) < dim X — 3 and by the first point of the
Orbit-Cone correspondence (Theorem 2.1.12), we get dim o > 3. O

5.1.2. Single orbit case. The aim of this section is to prove:

Proposition 5.1.3. Let ¥ be a smooth fan and let T € ¥ with dim(7) > 3. Then there is a torus
equivariant reflexive sheaf & on X of rank dim(7) — 1 such that X (&; )sing = V(7).

The construction is based on the following example introduced first by Hartshorne in [13,
Example 1.9.1].

Example 5.1.4. We assume that n € N satisfies n > 3. Let (uq, ..., u,) be the standard ba-
sis of Z™ and (ey, ..., ey) its dual basis. We denote by X the toric variety defined by the fan
Y = {Cone(A): A C{uq,...,u,}}. The toric variety X is C™ and its torus is (C*)". For
i € {1,...,n}, we set p; = Cone(u;) and A; = {1,...,n} \ {i}. Let & be the equivariant
reflexive sheaf on X defined by the family of filtrations (£, { E*(j)}) with

0 ifj<-—2
Eri(j)={ E ifj=-1
E ifj>0

where F = Span(uy,...,un—1), By = Span(u;) fori € {1,...,n — 1} and E,, = Span(u; +
.ot up—1). Forany k € {1,...,n}, we set o, = Cone(u; : i € Ag). On the cone oy, there is a
T-eigenspace decomposition

E=@D B

€A
with E|_.,; = E; such that, for any | € Ay,
EP(j) = EB E;.
i€ Ak, (—e;u)<j

Thus, ¥(n — 1) € 3(& )free. We assume that for 0 = Cone(uy, ..., uy), there is an eigenspace
decomposition ' = P, g F such that forany i € {1,...,n},

Epl(]): @ E, .

a€B, (a,ui)<j
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As EFi(—1) = E;, we deduce that : for any i € {1,...,n}, there is & € B such that £, = E.

So,
dim (@ Ea> > dim (@ E) > dim E;
ac€B i=1

this is a contradiction. Hence, by Proposition 2.3.12, Cone(uq, . .., uy) & 3(& )fee. This means
that & is not locally free at the origin. O

Remark 5.1.5. If 7 : C* \ {0} — P"~! denotes the quotient by homotheties, then the sheaf &
of Example 5.1.4 is isomorphic to the extension to C" by direct image of 7% Fpn-1.

Proof of Proposition 5.1.3. Let n = dim(X) and r = dim(Y") with Y = V(7). We assume that
7 = Cone(uy,...,up—r) and {Cone(A) : A C {uy,...,u,}} C X where (uy,...,up) is a
Z-basis of N. We set p; = Cone(u;) fori € {1,...,n —r}. Let E = Span(ui, ..., Up—r—1),
E; = Span(u;) fori € {1,...,n—r—1}and E,_, = Span(uj + ...+ up—r—1). We denote by
& the equivariant reflexive sheaf on X of rank n — r — 1 given by the family of filtrations

0 ifj<-—2
Eri(j)={ E ifj=-1
E ifj>0

fori € {1,...,n—r}and
. 0 ifj<o0
E'”(J)={ ’

E ifj>0
for p € (1) \ 7(1). According to Example 5.1.4, T € X(&)sing-
Let 0 = Cone(u, ..., uy). The invariant affine open subset U, of X meets Y and we have

compatible isomorphisms U, ~ C" and U,NY =~ C" where C" is identified with {0} x C" C C".
We consider the Z-linear map ¢ : N — Z"~"~! defined by

V; fl<i<n-r-1
d(uj)) =9 —(ni+...4+v—pq) fi=n—r
0 fn—r+1<i<n
where (v1,...,v,_,_1) is a basis of Z" "1, We set v, = —(v1 + ... + Vp_r_1),

Y1 = {Cone(A) : A C{u1,...,u,}and {uy, ..., up—r} ¢ A}

and

Y9 ={Cone(A): AC{vi,...,vn_r}}.

The map ¢ is compatible with the fan Y1 of C® \ C" and the fan X5 of P*~"~!. This induces a
map

mC\C = (€0 X C — T\ {0} — P

where the first map is the projection, and the second is the quotient by homotheties. Let .7
be the tangent sheaf of P"~"~!. Then 7*.% is an equivariant locally free sheaf of C"* \ C" and
its extension to C" by direct image is an equivariant coherent and reflexive sheaf on C" whose
singular locus is C". By using Example 2.3.11 and Proposition 4.1.1, the family of filtrations
(FAF?(4)} peo(r), jez) of the sheaf 7*.F on U, \ Y is given by

0 ifj < -2
FPi(j) = < Span(v;) ifj=-1
Span(vi,...,Up—p—1) ifj >0
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ifi e {1,...,n—r} and by

. 0 ifj <0
(i) —
F(5) { Span(vy,...,vp—p—1) ifj >0
if p € o(1)\7(1). Hence, m*.# is isomorphic to &y, on U,. Therefore, &y, has a singular locus
equal to U, N'Y. Thus,
{o' €X:7 =<0 <0} CE(E)sing-

If Uy is an invariant affine open subset of X' which does not meet Y, then &jy; , is isomorphic to
the trivial sheaf of rank n—r—1. Therefore, & islocally free on U,. Thus, X (& )sing = V(7). O

5.1.3. General case. Given a finite set of orbit closures of codimension at least 3, we show
that:

Theorem 5.1.6. Let X be a smooth toric variety with fan 3. Let 11, ..., Ty, € ¥ withdim(7;) > 3
such that for any i,j € {1,...,m} withi # j, 7; is not a proper face of 7;. Then, there exists an
equivariant reflexive sheaf & on X of rank ;" | dim(;) — m such that

X(&)sing = | J V(7).
=1

For the proof, we use the following lemma.

Lemma 5.1.7. Let & and &' be two equivariant reflexive sheaves on X such that X (& )sing = S1

and X(@m)sing = S9. We assume that S and So have no common irreducible component. Then,
the sheaf & & &' of X satisfies X (& @& & )sing = S1 U Sa.

Proof. For any z € X \ (51U S2), (& @& &), is a free Ox z-module. So X \ (S1 U S2) C
X (& & & e and X (& @ éo,)sing C 51U S,.

We now prove that S U Sy is included in X (& & &”)sing. To do this, we use the following
result of [24, Section 5.5] : € X (& )gee if and only if dh(&;) = 0 where dh is the homological
dimension. Let z € S U S2 \ (51N S3). We can assume that z € S1,s0x ¢ So. As (£ B &), =
&, ® & and &) is free, any resolution of &, @ & is of the form

Ej@gg—>...—>Eo@§g

for E; — ... — Ej a resolution of &,. Therefore, dh((& @ &”),;) > 1. Hence, S1 U S \
(S1NS2) € X(& @ &' )sing. By taking the Zariski closure of the inclusion S; U S2 \ (51N S2) C
X (& ® &”)sing and using the fact that X (& @ & )sing is Zariski closed, we get S1 U Sy C X (& @
g/)sing- ]

Proof of Theorem 5.1.6. We argue by induction on m. We assume that m = 2. According

to Proposition 5.1.3, there are two sheaves & and &5 on X such that X (&;)sing = V(7;) and

rk(&;) = dim(7;) — 1 for i = 1, 2. By Lemma 5.1.7, if we set & = &1 @ &, we get the result.
For m > 3, we assume that there is an equivariant reflexive sheaf &’ on X of rank

m—1
> dim(r;) — (m — 1)
=1

such that )
X (Mg = 51 = | V(7).
=1
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Let &” be an equivariant reflexive sheaf on X of rank dim(7,,) — 1 such that X (&")gng =
V(7). As Sy and V(7,,,) have no common irreducible component, by Lemma 5.1.7, the sheaf
& =& @ & satisfies X (&)sing = S1 UV (1y,) and rk(&) = >_;* | dim(7;) — m. This proves
the theorem. O






OUTLOOK

We give here a list of some problems that can be studied from the notions of Chapters
4 and 5 on pullbacks of sheaves and resolution of singularities.

A.1. RESOLUTION OF SINGULARITIES

We use the assumptions of Proposition 4.2.4. Let (uy,...,u,) be a basis of N and (eq,...,ey)
its dual basis such that {Cone(A) : A C {ui,...,up}} € ¥ and 7 = Cone(uy,...,us) for
s €{2,...,n}. We set p; = Cone(u;) for iz € {0,1,...,n} where up = uy + ... + us. For any
m=mie1 +...+mpe, € M,

ER =Y Ef(my+i)N...0E”(mg+is). (A1)
i1+...+is=0

Example A.1.1. Applying (A.1) to Example 5.1.4 with 7 = Cone(u1, ..., uy), we get

e ={ 550
Therefore, if 0 = Cone(ug, uy, .. .,un_1), there is a decomposition £ = @'~/ E_., with
Ej|_.,) = Ej such that for any p € o(1),
n—1
E(j)= P FEre-
(—etup)<i
Hence, by Proposition 2.3.12, the sheaf &” is locally free on X’ = Bly(;)(X). O

In this example, we explain how blowing up the origin is enough to resolve the singularity
of the sheaf given in Example 5.1.4. An application of Hironaka’s resolution of indeterminacy
locus gives:

Theorem A.1.2. Let X be a smooth toric variety with fan ¥.. Let & be an equivariant reflexive
sheaf on X with singular locus X (& )sing = U, V(7:) for some (7;)1<i<, € X". Then, there is a
sequence of at most p blow-ups along smooth irreducible torus invariant centers m; : X; — X;_1
with Xo = X such that, if  denotes mpmp_1 ... 7 : X, — X, the reflexive pullback (7*&)V" is
locally free on X,

The number p given in this theorem is not explicit. So the natural question on the toric case
would be to find an explicit bound on p according to the geometry of X and &
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A.2. PULLBACKS OF SHEAVES ALONG FIBRATIONS

A.2.1. Stability of sheaves in families. Let X be an n-dimensional smooth toric variety
with torus 7" associated to a fan .. We recall that [V is the lattice of one-parameter subgroups
of T'and M = Homy(N,Z). Let S be a scheme of finite type over C, and let Ts be the relative
torus of 7g : X xS — 5. An S-family of equivariant reflexive sheaves on X is a reflexive
sheaf & on X x S with an action of the relative torus 7T's compatible with the action on X x S.
Following [31, Proposition 3.13] and [25, Proposition 3.4], we have:

Proposition A.2.1. The category of S-families of equivariant reflexive sheaves on X is equivalent
to the category of reflexive sheaves .# on S with collections of increasing filtrations

{Fh :m e M}jes

indexed by the rays of . having the following properties:
1. forallm,m’ € M withm =<, m/, there are injections Flj, — ﬁﬁl, and FL, — F;
2. for each chain --- <, m;—1 <, m; <, --- of elements of M, there exists ig € Z such that
Fh, =0 foralli <ig;
3. and, there are only finetely many m € M such that the morphism

m m

b 7. — 7

m/<,m
is not surjective.

Remark A.2.2. The conditions verified by these families of filtrations are similar to those given
in Definition 2.3.5.

Proof. Let & be an S-family of equivariant reflexive sheaves on X. We denote by z( the identity
element of 7" and .# the reflexive sheaf &, 5. For p € %(1), we set 77 =T'(U, x S, &). As &
is reflexive, the sheaf & on X x S is uniquely determined by .# and the .#”. By [32, Theorem
2.30], the action of T" on .# 7 gives a decomposition into weight spaces

F* =P 7,

meM

where the .#/, are 0's-module of finite type. Hence, for any m € M, FP is a coherent sheaf
over S. As & is reflexive, the sheaves . %%, are reflexive.

The restriction of & to zo x S gives injections %}, — . whose image depends only on
the class [m] in M /(M N pt). For m’ € M N p", multiplication by the character y" gives a
map from %}, to.Z” . As this multiplication map is an isomorphism of .# and the following

m—+m/
diagram commutes,

m/

X TP
—
cj‘m—&—m’

Fh
gfx—ml>y

we get an injection ), — Z/ 4~ This description makes it possible to establish the equiv-

alence of categories. O

Let & be an S-family of equivariant reflexive sheaves on X. For any s € S, we set

@ﬁs = g\XX{s}'
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Let (Z,{#), : m € M}) be the collection of increasing filtrations associated to &. Then, for
any s € S, the family of filtrations (Es, { E5(j)}) of the reflexive sheaf & is given by

Es=F(s) and E{(j) = F(s)

with m € M such that (m,u,) = j where .7 (s) and .7}, (s) are respectively the fiber of . and
FF at s defined in (2.13). We first observe that:

Lemma A.2.3. Fix an ample divisor L on X. If for all p € (1) and j € Z, the map s —
dim(E% (7)) is constant, then the set

{ML((@ﬁs)F) :5€85,0 - F - Es}
is finite.

Proof. The proof is similar to the proof of Lemma 2.3.19. For any p € (1), there is (j,, J,) € Z*
such that for any s € S, Ef(j) = {0} if j < j, and Ef(j) = Esif j > J,. As

{dim(E?(j)NF) —dim(E?(j —1)NF):j€Z,s€ S, and 0 C F C E,} C {0,1,...,1k(&)},

we deduce that {¢,((&)r) : s € S,0 C F C E,} is finite. Hence, the lemma follows from
Formula (2.20). O

The previous lemma is the key to obtain a family version of Theorems 4.1.6 and 4.1.9. The
characteristic function x of an equivariant reflexive sheaf & with family of filtrations (F, { F*(j)})
is the function

xX¥9): M — Z/=m)
m > (dim(F))ses(n)
where F5, = (¢, (1) F7((m, up)). The families that we will consider will satisfy one of the
following:

(I) & islocally free on X x S, or
(I) the characteristic function (x(&s))ses is constant.

Lemma A.2.4. Let X be a smooth toric variety. Assume that (&;)ies satisfies (I) or (I). Then for
allp € (1) and j € Z, s — dim(E£(4)) is constant.

Proof. In the case that the family satisfies (I), by [31, Proposition 3.13] (Klyachko’s compatibility
condition for S-families of locally free sheaves), for any o € ¥(n), there is a multiset A, C M
of size rk(&’) such that for any m € M, %), is a locally free sheaf of rank

Ho € Ag (s up) < (myup)
As for any s € S and m € M, dim(F),(s)) = tk(F},), we deduce that the map
s — dim(EL((m,up)))

is constant.
We now assume (II). For any o € 3(n), the set {u, : p € o(1)} is a basis of V. Then, for any
p € o(1) and any j € Z, we can find an element m € M such that for all s € S,

<mv up> =J

and for p' € o(1) \ {p},

/

B¢ ((m,up)) = Es.
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This can be made uniform in s as follows: by (II), we can fix m’ € M such that E7 , = E; for

all s € S. This implies that for p’ € o(1), Eé’/(<m’, u,)) = Es. Then, define

m = ju, + Z(m',up/>u;/
p'#p

where {u}, : p’ € o(1)} is the dual basis of {u, : p’ € o(1)}. But then

EZ,,= () Ef(muy))=EL()
p'ea(l)

and (IT) implies the result. O

Let 7 : X’ — X be a toric fibration between two smooth toric varieties and (&}):cgs be a
family of reflexive sheaves on X satisfying (I) or (II). Assume that for all t € S, &; is stable on
(X, L). From Lemma A.2.4 and Lemma A.2.3, we deduce that the ¢ in the proof of Theorem 4.1.6
can be taken uniformly in ¢t € S. Note for this that in the expansions in € of formula (2.20) for the
slopes ju1,. (&/), the terms ¢,(&) do not vary with ¢, only the terms deg,_(D,,) do. Similarly, we
can take £ uniform in Theorem 4.1.9 if all &; are assumed to be sufficiently smooth on (X, L).

We deduce from this the existence of injective maps between components of the moduli
spaces of stable equivariant reflexive sheaves on (X, L) and on (X', L.), for £ small enough.
One can consider the moduli space of equivariant stable reflexive sheaves on (X, L) with fixed
characteristic function x introduced in [25], denoted A45/**(X, L). As x determines the Chern
character ([23] and [25, Section 3.4]), and thus the Hilbert polynomial by Hirzebruch-Riemann-
Roch, we deduce that the reflexive pullback induces an injective map for ¢ < 1:

T NE(X, L) — A(X, L)

where P’ denotes the Hilbert polynomial with respect to L. of any element (7*&")"" with char-
acteristic function . In fact, if we denote P, the Hilbert polynomial induced by x, we expect
that this map is actually defined on

ME(X, L) = | AH(X L)
P,=P

the moduli of stable equivariant reflexive sheaves with Hilbert polynomial P. In the same way,
fixing the total Chern class, one should obtain maps between the moduli spaces of equivariant
and stable locally free sheaves. Those spaces should be obtained as open sub-schemes of the
moduli spaces constructed in [31]. We believe that those maps deserve further study and will
come back to them in future research.

A.2.2. Pullback of sheaves. Theorem 4.1.9 and 4.2.10 are given in the toric setting. Our
goal is to see if these theorems remain true without the toric assumptions on sheaves or in the
case of normal projective varieties. In the toric setting, it is Lemma 2.3.19 which simplifies the
study. In other cases, the idea will be to study the stability of &’ by using

sup {ur(F) : F C & asubsheaf with 0 < rk(.%) < rk(&)}

and the length of the graded object Gry, (&) of & with respect to L.
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Résumé : Le probleme abordé dans cette
thése est celui de la construction de fais-
ceaux réflexifs équivariants stables sur les va-
riétés toriques. Ce travail est motivé par la
question de classification des fibrés vecto-
riels sur les variétés complexes compactes.
Cette these est formée de trois parties. Dans
la premiére partie, nous étudions la stabilité
des faisceaux tangents logarithmiques équi-
variants Jx (—log D) ou X est une variété to-
rique projective et D un diviseur réduit. Le re-
sultat principal de cette partie est la classi-
fication compléte des diviseurs réduits D et
des polarisations L sur X tels que le fais-
ceau tangent logarithmique Zx(—log D) est
(semi)stable par rapport a L lorsque X est de
rang de Picard deux. Dans la deuxieme par-

tie, pour un faisceau réflexif équivariant sur
une variété torique polarisée, nous étudions
la stabilité de I'enveloppe réflexive de son pull-
back le long d’une fibration torique. On montre
que la stabilité (resp. l'instabilité) est préser-
vée par certaines polarisations dites adiaba-
tiques. Dans le cas ou le faisceau est locale-
ment libre et semistable, nous donnons une
condition nécessaire et suffisante sur son ob-
jet gradué pour que son pullback réflexif de-
vienne stable. Dans la derniére partie, nous
étudions le lieu singulier des faisceaux ré-
flexifs équivariants. Nous construisons expli-
citement un faisceau réflexif ayant pour lieu
singulier une sous-variété irréductible de co-
dimension au moins trois.

Stable equivariant sheaves on toric varieties

Keywords: Toric varieties, equivariant reflexive sheaves, slope-stability

Abstract: This PhD thesis deals with the
problem of construction of stable equivariant
reflexive sheaves on toric varieties. This work
is motivated by the question of classification
of vector bundles on compact complex mani-
folds. This thesis consists of three parts. In
the first part, we study the stability of equivari-
ant logarithmic tangent sheaves Zx (—log D)
where X is a projective toric variety and D a
reduced divisor. The main result of this part
is the classification of reduced divisors D and
polarizations L on X such that the equivari-
ant logarithmic tangent sheaf 7x(—log D) is
(semi)stable with respect to L. when X is a
smooth toric variety of Picard rank two. In the

second part, for an equivariant reflexive sheaf
on a polarized toric variety, we study the sta-
bility of its reflexive pullback along a toric fibra-
tion. We show that stability (resp. unstability)
is preserved under such pullbacks by some
adiabatic polarizations. In the case where the
sheaf is semistable, under local freeness as-
sumptions, we provide a necessary and suf-
ficient condition on the graded object to en-
sure stability of the pulled back sheaf. In the
last part, we study the singular locus of equiv-
ariant reflexive sheaves. We construct an ex-
plicit equivariant reflexive sheaf whose singu-
lar locus is an irreducible subvariety of codi-
mension at least three.
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